Zhou Xin Ran, Zhang Long, Zheng Tao, Li Hong-Li, Teng Zhi Dong
College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China.
Math Biosci Eng. 2020 Jun 29;17(5):4527-4543. doi: 10.3934/mbe.2020250.
A HIV virus-to-cell dynamical model with distributed delay and Beddington-DeAngelis functional response is proposed in this paper. Using the characteristic equations and analytical means, the principle reproduction number on the local stability of infection-free and chronic-infection equilibria is established. Furthermore, by constructing suitable Lyapunov functionals and using LaSalle invariance principle, we show that if ≤ 1 the infection-free equilibrium is globally asymptotically stable, while if > 1 the chronic-infection equilibrium is globally asymptotically stable. Numerical simulations are presented to illustrate the theoretical results. Comparing the effects between discrete and distributed delays on the stability of HIV virus-to-cell dynamical models, we can see that they could be same and different even opposite.
本文提出了一个具有分布时滞和Beddington-DeAngelis功能反应的HIV病毒-细胞动力学模型。利用特征方程和分析方法,建立了关于无感染和慢性感染平衡点局部稳定性的基本再生数。此外,通过构造合适的Lyapunov泛函并运用LaSalle不变性原理,我们证明了如果≤1,则无感染平衡点是全局渐近稳定的,而如果>1,则慢性感染平衡点是全局渐近稳定的。给出了数值模拟以说明理论结果。比较离散时滞和分布时滞对HIV病毒-细胞动力学模型稳定性的影响,我们可以看到它们可能相同、不同甚至相反。