School of Science, Xi'an Polytechnic University, Xi'an, People's Republic of China.
School of Sciences, Xi'an University of Technology, Xi'an, People's Republic of China.
J Biol Dyn. 2021 Dec;15(1):287-307. doi: 10.1080/17513758.2021.1922770.
This paper studies a delayed viral infection model with diffusion and a general incidence rate. A discrete-time model was derived by applying nonstandard finite difference scheme. The positivity and boundedness of solutions are presented. We established the global stability of equilibria in terms of by applying Lyapunov method. The results showed that if is less than 1, then the infection-free equilibrium is globally asymptotically stable. If is greater than 1, then the infection equilibrium is globally asymptotically stable. Numerical experiments are carried out to illustrate the theoretical results.
本文研究了一个具有扩散和一般发生率的时滞病毒感染模型。通过应用非标准有限差分方案推导出了一个离散时间模型。给出了解的正定性和有界性。通过应用 Lyapunov 方法,我们根据 建立了平衡点的全局稳定性。结果表明,如果 小于 1,则无感染平衡点 是全局渐近稳定的。如果 大于 1,则感染平衡点 是全局渐近稳定的。通过数值实验验证了理论结果。