Suppr超能文献

一种基于分数阶导数的登革热新模型。

A new model of dengue fever in terms of fractional derivative.

作者信息

Fatmawati Fatmawati, Jan Rashid, Khan Muhammad Altaf, Khan Yasir, Ullah Saif

机构信息

Department of Mathematics, Faculty of Science and Technology,Universitas Airlangga, Surabaya 60115, Indonesia.

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, PR China.

出版信息

Math Biosci Eng. 2020 Aug 10;17(5):5267-5287. doi: 10.3934/mbe.2020285.

Abstract

It is eminent that the epidemiological patterns of dengue are threatening for both the global economy and human health. The experts in the field are always in search to have better mathematician models in order to understand the transmission dynamics of epidemics models and to suggest possible control or the minimization of the infection from the community. In this research, we construct a new fractional-order system for dengue infection with carrier and partially immune classes to visualize the intricate dynamics of dengue. By using the basics of fractional theory, we determine the fundamental results of the proposed fractional-order dengue model. We obtain the basic reproduction number $R_0$ by next generation method and present the results based on it. The stability results are established for the infection-free state of the system. Moreover, sensitivity of $R_0$ is analyzed through partial rank correlation coefficient(PRCC) method to show the importance of different parameters in $R_0$. The influence of different input factors is shown on the output of basic reproduction number $R_0$ numerically. Our result showed that the threshold parameter $R_0$ can be decreased by increasing vaccination and treatment in the system. Finally, we illustrate the solution of the suggested dengue system through a numerical scheme to notice the influence of the fractional-order $\vartheta$ on the system. We observed that the fractional-order dynamics can explain the complex system of dengue infection more precisely and accurately rather than the integer-order dynamics. In addition, we noticed that the index of memory and biting rate of vector can play a significant part in the prevention of the infection.

摘要

很明显,登革热的流行模式对全球经济和人类健康都构成了威胁。该领域的专家一直在寻求更好的数学模型,以便了解流行病模型的传播动态,并提出可能的控制措施或尽量减少社区感染。在本研究中,我们构建了一个新的带有载体和部分免疫类别的登革热感染分数阶系统,以可视化登革热的复杂动态。通过运用分数阶理论的基础知识,我们确定了所提出的分数阶登革热模型的基本结果。我们通过下一代方法获得基本再生数(R_0),并在此基础上呈现结果。建立了系统无感染状态的稳定性结果。此外,通过偏秩相关系数(PRCC)方法分析了(R_0)的敏感性,以显示不同参数在(R_0)中的重要性。数值显示了不同输入因素对基本再生数(R_0)输出的影响。我们的结果表明,通过增加系统中的疫苗接种和治疗,可以降低阈值参数(R_0)。最后,我们通过一个数值方案说明了所建议的登革热系统的解,以注意分数阶(\vartheta)对系统的影响。我们观察到,分数阶动力学比整数阶动力学能更精确、准确地解释登革热感染的复杂系统。此外,我们注意到记忆指数和病媒叮咬率在预防感染方面可以发挥重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验