Suppr超能文献

在ADNI-2队列中探索一种利用MRI和神经心理学标志物预测脑Aβ负荷的经济高效模型。

Exploring a Cost-Efficient Model for Predicting Cerebral Aβ Burden Using MRI and Neuropsychological Markers in the ADNI-2 Cohort.

作者信息

Ko Hyunwoong, Park Seho, Kwak Seyul, Ihm Jungjoon

机构信息

Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul 100-011, Korea.

Dental Research Institute, School of Dentistry, Seoul National University, Seoul 100-011, Korea.

出版信息

J Pers Med. 2020 Oct 27;10(4):197. doi: 10.3390/jpm10040197.

Abstract

Many studies have focused on the early detection of Alzheimer's disease (AD). Cerebral amyloid beta (Aβ) is a hallmark of AD and can be observed in vivo via positron emission tomography imaging using an amyloid tracer or cerebrospinal fluid assessment. However, these methods are expensive. The current study aimed to identify and compare the ability of magnetic resonance imaging (MRI) markers and neuropsychological markers to predict cerebral Aβ status in an AD cohort using machine learning (ML) approaches. The prediction ability of candidate markers for cerebral Aβ status was examined by analyzing 724 participants from the ADNI-2 cohort. Demographic variables, structural MRI markers, and neuropsychological test scores were used as input in several ML algorithms to predict cerebral Aβ positivity. Out of five combinations of candidate markers, neuropsychological markers with demographics showed the most cost-efficient result. The selected model could distinguish abnormal levels of Aβ with a prediction ability of 0.85, which is the same as that for MRI-based models. In this study, we identified the prediction ability of MRI markers using ML approaches and showed that the neuropsychological model with demographics can predict Aβ positivity, suggesting a more cost-efficient method for detecting cerebral Aβ status compared to MRI markers.

摘要

许多研究都聚焦于阿尔茨海默病(AD)的早期检测。脑淀粉样β蛋白(Aβ)是AD的一个标志,可通过使用淀粉样示踪剂的正电子发射断层扫描成像或脑脊液评估在体内观察到。然而,这些方法成本高昂。当前研究旨在使用机器学习(ML)方法,识别并比较磁共振成像(MRI)标志物和神经心理学标志物在AD队列中预测脑Aβ状态的能力。通过分析来自ADNI - 2队列的724名参与者,检验了候选标志物对脑Aβ状态的预测能力。人口统计学变量、结构MRI标志物和神经心理学测试分数被用作几种ML算法的输入,以预测脑Aβ阳性。在候选标志物的五种组合中,结合人口统计学的神经心理学标志物显示出最具成本效益的结果。所选模型能够以0.85的预测能力区分异常水平的Aβ,这与基于MRI的模型相同。在本研究中,我们使用ML方法确定了MRI标志物的预测能力,并表明结合人口统计学的神经心理学模型可以预测Aβ阳性,这表明与MRI标志物相比,它是一种检测脑Aβ状态更具成本效益的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验