文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在不同内生核心微生物组条件下干旱胁迫对选定斯佩尔特小麦品种(ssp. L.)生长和光合作用的影响。

Growth and Photosynthetic Activity of Selected Spelt Varieties ( ssp. L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes.

机构信息

Department of Agronomy, Poznan University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland.

Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska St., 60-479 Poznań, Poland.

出版信息

Int J Mol Sci. 2020 Oct 27;21(21):7987. doi: 10.3390/ijms21217987.


DOI:10.3390/ijms21217987
PMID:33121138
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7662716/
Abstract

The role of the microbiome in the root zone is critically important for plants. However, the mechanism by which plants can adapt to environmental constraints, especially water deficit, has not been fully investigated to date, while the endophytic core microbiome of the roots of spelt ( ssp. L.) grown under drought conditions has received little attention. In this study, we hypothesize that differences in the endophytic core of spelt and common wheat root microbiomes can explain the variations in the growth and photosynthetic activity of those plants, especially under drought conditions. Our greenhouse experimental design was completely randomized in a 2 × 4 × 3 factorial scheme: two water regime levels (well-watered and drought), three spelt varieties ( ssp. L.: 'Badenstern', 'Badenkrone' and 'Zollernspelz' and one wheat variety: ssp. L: 'Dakotana') and three mycorrhizal levels (autoclaved soil inoculation with , control (autoclaved soil) and natural inoculation (non-autoclaved soil-microorganisms from the field). During the imposed stress period, relative water content (RWC), leaf chlorophyll fluorescence, gas exchange and water use efficiency (WUE) were measured. Microscopic observations of the root surface through fungi isolation and identification were conducted. Our results indicate that 'Badenstern' was the most drought tolerant variety, followed by 'Zollernspelz' and 'Badenkrone,' while the common wheat variety 'Dakotana' was the most drought sensitive. Inoculation of 'Badenstern' with the mycorrhizal fungi contributed to better growth performance as evidenced by increased whole plant and stalk dry matter accumulation, as well as greater root length and volume. Inoculation of 'Zollernspelz' with arbuscular mycorrhizal fungi (AMF) enhanced the photochemical efficiency of Photosystem II and significantly improved root growth under drought conditions, which was confirmed by enhanced aboveground biomass, root dry weight and length. This study provides evidence that AMF have the potential to be beneficial for plant growth and dry matter accumulation in spelt varieties grown under drought conditions.

摘要

微生物组在根区对植物至关重要。然而,迄今为止,植物如何适应环境限制,特别是水分亏缺的机制尚未得到充分研究,而在干旱条件下生长的斯佩尔特( ssp. L.)根内共生核心微生物组受到的关注较少。在这项研究中,我们假设斯佩尔特和普通小麦根微生物组的内共生核心差异可以解释这些植物,特别是在干旱条件下的生长和光合作用活性的变化。我们的温室实验设计采用完全随机的 2 × 4 × 3 析因方案:两个水分水平(充分浇水和干旱)、三个斯佩尔特品种( ssp. L.:'Badenstern'、'Badenkrone'和'Zollernspelz'和一个小麦品种: ssp. L.:'Dakotana')和三个菌根水平(灭菌土接种 ,对照(灭菌土)和自然接种(非灭菌土-田间微生物)。在施加胁迫期间,测量相对水含量(RWC)、叶片叶绿素荧光、气体交换和水分利用效率(WUE)。通过真菌分离和鉴定对根表面进行显微镜观察。我们的结果表明,'Badenstern'是最耐旱的品种,其次是'Zollernspelz'和'Badenkrone',而普通小麦品种'Dakotana'是最耐旱的。用菌根真菌 接种 'Badenstern'有助于更好的生长表现,表现为整株和茎干物质积累增加,以及根长和体积增加。用丛枝菌根真菌(AMF)接种'Zollernspelz'增强了光系统 II 的光化学效率,并显著改善了干旱条件下的根生长,这通过增强地上生物量、根干重和长度得到证实。本研究表明,AMF 有可能有益于在干旱条件下生长的斯佩尔特品种的植物生长和干物质积累。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/239dde498c58/ijms-21-07987-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/437129cf2451/ijms-21-07987-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/ee779e341137/ijms-21-07987-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/728e4eaafbfe/ijms-21-07987-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/f59dc690f3a6/ijms-21-07987-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/63bdf300788c/ijms-21-07987-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/fd4a6ee22353/ijms-21-07987-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/bc97d577627f/ijms-21-07987-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/9e2fdecd1261/ijms-21-07987-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/990e30340d72/ijms-21-07987-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/18efc79b9747/ijms-21-07987-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/2642e7321399/ijms-21-07987-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/10ff95c892d3/ijms-21-07987-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/239dde498c58/ijms-21-07987-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/437129cf2451/ijms-21-07987-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/ee779e341137/ijms-21-07987-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/728e4eaafbfe/ijms-21-07987-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/f59dc690f3a6/ijms-21-07987-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/63bdf300788c/ijms-21-07987-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/fd4a6ee22353/ijms-21-07987-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/bc97d577627f/ijms-21-07987-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/9e2fdecd1261/ijms-21-07987-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/990e30340d72/ijms-21-07987-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/18efc79b9747/ijms-21-07987-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/2642e7321399/ijms-21-07987-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/10ff95c892d3/ijms-21-07987-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa05/7662716/239dde498c58/ijms-21-07987-g013.jpg

相似文献

[1]
Growth and Photosynthetic Activity of Selected Spelt Varieties ( ssp. L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes.

Int J Mol Sci. 2020-10-27

[2]
Changes in root-associated fungal communities in Triticum aestivum ssp. spelta L. and Triticum aestivum ssp. vulgare L. under drought stress and in various soil processing.

PLoS One. 2020-10-6

[3]
Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress.

Photosynth Res. 2018-7-7

[4]
Field response of wheat to arbuscular mycorrhizal fungi and drought stress.

Mycorrhiza. 2004-8

[5]
Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae.

J Proteomics. 2017-3-30

[6]
Nano-enabled improvements of growth and colonization rate in wheat inoculated with arbuscular mycorrhizal fungi.

Environ Pollut. 2022-2-15

[7]
Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions.

J Plant Physiol. 2011-3-5

[8]
In Vivo Modulation of Arbuscular Mycorrhizal Symbiosis and Soil Quality by Fungal P Solubilizers.

Microb Ecol. 2019-6-19

[9]
Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture.

PLoS One. 2021

[10]
Arbuscular mycorrhizal fungus Rhizophagus irregularis alleviates drought stress in soybean with overexpressing the GmSPL9d gene by promoting photosynthetic apparatus and regulating the antioxidant system.

Microbiol Res. 2023-8

引用本文的文献

[1]
Environmental interference of plant-microbe interactions.

Plant Cell Environ. 2022-12

[2]
Impact of the Cultivation System and Plant Cultivar on Arbuscular Mycorrhizal Fungi of Spelt ( ssp. L.) in a Short-Term Monoculture.

Pathogens. 2022-7-28

[3]
Environmental Stress and Plants.

Int J Mol Sci. 2022-5-12

本文引用的文献

[1]
Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. 'Hondia') and the first report of microbiota in Triticum spelta L. (cv. 'Rokosz').

Syst Appl Microbiol. 2019-10-21

[2]
Brans from hull-less barley, emmer and pigmented wheat varieties: From by-products to bread nutritional improvers using selected lactic acid bacteria and xylanase.

Int J Food Microbiol. 2019-10-22

[3]
Can pyraclostrobin and epoxiconazole protect conventional and stay-green maize varieties grown under drought stress?

PLoS One. 2019-8-20

[4]
Genome-Wide Association Studies Reveal Genomic Regions Associated With the Response of Wheat ( L.) to Mycorrhizae Under Drought Stress Conditions.

Front Plant Sci. 2018-12-4

[5]
MALDI-TOF MS Detection of Endophytic Bacteria Associated with Great Nettle (Urtica dioica L.), Grown in Algeria.

Pol J Microbiol. 2018-3-9

[6]
Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress.

Photosynth Res. 2018-7-7

[7]
Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi.

Sci Rep. 2018-4-20

[8]
Consistent associations with beneficial bacteria in the seed endosphere of barley (Hordeum vulgare L.).

Syst Appl Microbiol. 2018-3-13

[9]
Does social distinction contribute to socioeconomic inequalities in diet: the case of 'superfoods' consumption.

Int J Behav Nutr Phys Act. 2017-3-27

[10]
Identifying seedling root architectural traits associated with yield and yield components in wheat.

Ann Bot. 2017-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索