Suppr超能文献

基于氨基酸特征与能量、物理化学和结构特征融合的离子配体结合位点识别。

Recognition of Ion Ligand Binding Sites Based on Amino Acid Features with the Fusion of Energy, Physicochemical and Structural Features.

机构信息

College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China.

出版信息

Curr Pharm Des. 2021;27(8):1093-1102. doi: 10.2174/1381612826666201029100636.

Abstract

UNLABELLED

[Background: Rational drug molecular design based on virtual screening requires the ligand binding site to be known. Recently, the recognition of ion ligand binding site has become an important research direction in pharmacology.

METHODS

In this work, we selected the binding residues of 4 acid radical ion ligands (NO, CO, SO and PO) and 10 metal ion ligands (Zn, Cu, Fe, Fe, Ca, Mg, Mn, Na, K and Co) as research objects. Based on the protein sequence information, we extracted amino acid features, energy, physicochemical, and structure features. Then, we incorporated the above features and input them into the MultilayerPerceptron (MLP) and support vector machine (SVM) algorithms.

RESULTS

In the independent test, the best accuracy was higher than 92.5%, which was better than the previous results on the same dataset. In addition, we found that energy information is an important factor affecting the prediction results.

CONCLUSION

Finally, we set up a free web server for the prediction of protein-ion ligand binding sites (http://39.104.77.103:8081/lsb/HomePage/HomePage.html). This study is helpful for molecular drug design.

摘要

未加标签

[背景:基于虚拟筛选的合理药物分子设计需要知道配体结合位点。最近,离子配体结合位点的识别已成为药理学的一个重要研究方向。

方法

在这项工作中,我们选择了 4 种酸根离子配体(NO、CO、SO 和 PO)和 10 种金属离子配体(Zn、Cu、Fe、Fe、Ca、Mg、Mn、Na、K 和 Co)的结合残基作为研究对象。基于蛋白质序列信息,我们提取了氨基酸特征、能量、物理化学和结构特征。然后,我们将上述特征合并并输入到多层感知器(MLP)和支持向量机(SVM)算法中。

结果

在独立测试中,最佳准确性高于 92.5%,优于同一数据集上的先前结果。此外,我们发现能量信息是影响预测结果的重要因素。

结论

最后,我们建立了一个免费的蛋白质-离子配体结合位点预测网络服务器(http://39.104.77.103:8081/lsb/HomePage/HomePage.html)。这项研究有助于分子药物设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验