College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China.
Curr Pharm Des. 2021;27(8):1093-1102. doi: 10.2174/1381612826666201029100636.
[Background: Rational drug molecular design based on virtual screening requires the ligand binding site to be known. Recently, the recognition of ion ligand binding site has become an important research direction in pharmacology.
In this work, we selected the binding residues of 4 acid radical ion ligands (NO, CO, SO and PO) and 10 metal ion ligands (Zn, Cu, Fe, Fe, Ca, Mg, Mn, Na, K and Co) as research objects. Based on the protein sequence information, we extracted amino acid features, energy, physicochemical, and structure features. Then, we incorporated the above features and input them into the MultilayerPerceptron (MLP) and support vector machine (SVM) algorithms.
In the independent test, the best accuracy was higher than 92.5%, which was better than the previous results on the same dataset. In addition, we found that energy information is an important factor affecting the prediction results.
Finally, we set up a free web server for the prediction of protein-ion ligand binding sites (http://39.104.77.103:8081/lsb/HomePage/HomePage.html). This study is helpful for molecular drug design.
[背景:基于虚拟筛选的合理药物分子设计需要知道配体结合位点。最近,离子配体结合位点的识别已成为药理学的一个重要研究方向。
在这项工作中,我们选择了 4 种酸根离子配体(NO、CO、SO 和 PO)和 10 种金属离子配体(Zn、Cu、Fe、Fe、Ca、Mg、Mn、Na、K 和 Co)的结合残基作为研究对象。基于蛋白质序列信息,我们提取了氨基酸特征、能量、物理化学和结构特征。然后,我们将上述特征合并并输入到多层感知器(MLP)和支持向量机(SVM)算法中。
在独立测试中,最佳准确性高于 92.5%,优于同一数据集上的先前结果。此外,我们发现能量信息是影响预测结果的重要因素。
最后,我们建立了一个免费的蛋白质-离子配体结合位点预测网络服务器(http://39.104.77.103:8081/lsb/HomePage/HomePage.html)。这项研究有助于分子药物设计。