School of Finance and Economics, Xinyang Agriculture and Forestry University, Xinyang 464000, China.
School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China.
Biomed Res Int. 2022 Mar 31;2022:8965712. doi: 10.1155/2022/8965712. eCollection 2022.
Clear evidence has shown that metal ions strongly connect and delicately tune the dynamic homeostasis in living bodies. They have been proved to be associated with protein structure, stability, regulation, and function. Even small changes in the concentration of metal ions can shift their effects from natural beneficial functions to harmful. This leads to degenerative diseases, malignant tumors, and cancers. Accurate characterizations and predictions of metalloproteins at the residue level promise informative clues to the investigation of intrinsic mechanisms of protein-metal ion interactions. Compared to biophysical or biochemical wet-lab technologies, computational methods provide open web interfaces of high-resolution databases and high-throughput predictors for efficient investigation of metal-binding residues. This review surveys and details 18 public databases of metal-protein binding. We collect a comprehensive set of 44 computation-based methods and classify them into four categories, namely, learning-, docking-, template-, and meta-based methods. We analyze the benchmark datasets, assessment criteria, feature construction, and algorithms. We also compare several methods on two benchmark testing datasets and include a discussion about currently publicly available predictive tools. Finally, we summarize the challenges and underlying limitations of the current studies and propose several prospective directions concerning the future development of the related databases and methods.
已有明确证据表明,金属离子可强烈连接并精细调节活体中的动态动态平衡。它们已被证明与蛋白质结构、稳定性、调节和功能有关。即使金属离子浓度的微小变化也可能使其作用从自然有益功能转变为有害作用。这会导致退行性疾病、恶性肿瘤和癌症。在残基水平上对金属蛋白进行准确的特征描述和预测,可以为研究蛋白质-金属离子相互作用的内在机制提供有价值的线索。与生物物理或生化湿实验室技术相比,计算方法为高效研究金属结合残基提供了高分辨率数据库和高通量预测器的开放网络接口。本综述调查并详细介绍了 18 个金属蛋白结合公共数据库。我们收集了一套全面的 44 种基于计算的方法,并将它们分为四类,即学习、对接、模板和元方法。我们分析了基准数据集、评估标准、特征构建和算法。我们还在两个基准测试数据集上比较了几种方法,并讨论了当前可用的预测工具。最后,我们总结了当前研究的挑战和潜在局限性,并提出了关于相关数据库和方法未来发展的几个前瞻性方向。