Yang Xiaowei, Deng Wenxiang, Yao Jianyong
IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):7339-7349. doi: 10.1109/TNNLS.2022.3141463. Epub 2023 Oct 5.
In this article, a novel neural network (NN)-based adaptive dynamic surface asymptotic tracking controller with guaranteed transient performance is proposed for n -degrees of freedom (DOF) hydraulic manipulators. To fulfill the work, the entire manipulator system model, including hydraulic actuator dynamics, is first established. Then, the neural adaptive dynamic surface controller is designed, in which the NN is utilized to approximate the unknown joint coupling dynamics, while the approximation error and uncertainties of the actuator dynamics are addressed by the nonlinear robust control law with adaptive gains. In addition, a modified funnel function that ensures the joint tracking errors remains within a predefined funnel boundary and is skillfully incorporated into the adaptive dynamic surface control (ADSC) design to achieve a guaranteed transient tracking performance. The theoretical analysis reveals that both the guaranteed transient tracking performance and asymptotic stability can be achieved with the proposed controller. Contrastive simulations are performed on a 2-DOF hydraulic manipulator to demonstrate the superiority of the proposed controller.
在本文中,针对n自由度液压机械手,提出了一种具有保证暂态性能的基于新型神经网络(NN)的自适应动态面渐近跟踪控制器。为完成此项工作,首先建立了包括液压执行器动力学在内的整个机械手系统模型。然后,设计了神经自适应动态面控制器,其中利用神经网络逼近未知的关节耦合动力学,而执行器动力学的逼近误差和不确定性则通过具有自适应增益的非线性鲁棒控制律来处理。此外,一种改进的漏斗函数可确保关节跟踪误差保持在预定义的漏斗边界内,并巧妙地纳入自适应动态面控制(ADSC)设计中,以实现有保证的暂态跟踪性能。理论分析表明,所提出的控制器能够实现有保证的暂态跟踪性能和渐近稳定性。在一个二自由度液压机械手上进行了对比仿真,以证明所提出控制器的优越性。