Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
J Mol Biol. 2020 Dec 4;432(24):166692. doi: 10.1016/j.jmb.2020.10.026. Epub 2020 Oct 27.
PLP-dependent enzymes catalyze a plethora of chemical reactions affecting diverse physiological functions. Here we report the structural determinants of the reaction mechanism in a Group II PLP-dependent decarboxylase by assigning two early intermediates. The in-crystallo complexes of the PLP bound form, and the Dunathan and quinonoid intermediates, allowed direct observation of the active site interactions. The structures reveal that a subtle rearrangement of a conserved Arg residue in concert with a water-mediated interaction with the carboxylate of the Dunathan intermediate, appears to directly stabilize the alignment and facilitate the release of CO to yield the quinonoid. Modeling indicates that the conformational change of a dynamic catalytic loop to a closed form controls a conserved network of hydrogen bond interactions between catalytic residues to protonate the quinonoid. Our results provide a structural framework to elucidate mechanistic roles of residues that govern reaction specificity and catalysis in PLP-dependent decarboxylation.
PLP 依赖性酶催化多种化学反应,影响多种生理功能。在这里,我们通过分配两个早期中间体,报道了 II 组 PLP 依赖性脱羧酶的反应机制的结构决定因素。在晶体中的 PLP 结合形式和 Dunathan 以及醌型中间体的复合物中,允许直接观察到活性位点的相互作用。这些结构表明,保守的 Arg 残基的微妙重排与水介导的与 Dunathan 中间体的羧酸盐相互作用协同作用,似乎直接稳定了对齐并促进 CO 的释放以产生醌型。建模表明,动态催化环的构象变化为封闭形式控制催化残基之间的氢键相互作用的保守网络,以将醌型质子化。我们的结果提供了一个结构框架,以阐明决定 PLP 依赖性脱羧反应特异性和催化的残基的机制作用。