Suppr超能文献

使用随机梯度的凸优化问题的可变平滑法

Variable Smoothing for Convex Optimization Problems Using Stochastic Gradients.

作者信息

Boţ Radu Ioan, Böhm Axel

机构信息

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.

出版信息

J Sci Comput. 2020;85(2):33. doi: 10.1007/s10915-020-01332-8. Epub 2020 Oct 22.

Abstract

We aim to solve a structured convex optimization problem, where a nonsmooth function is composed with a linear operator. When opting for full splitting schemes, usually, primal-dual type methods are employed as they are effective and also well studied. However, under the additional assumption of Lipschitz continuity of the nonsmooth function which is composed with the linear operator we can derive novel algorithms through regularization via the Moreau envelope. Furthermore, we tackle large scale problems by means of stochastic oracle calls, very similar to stochastic gradient techniques. Applications to total variational denoising and deblurring, and matrix factorization are provided.

摘要

我们旨在解决一个结构化凸优化问题,其中一个非光滑函数与一个线性算子复合。在选择完全分裂格式时,通常会采用原始对偶型方法,因为它们有效且研究充分。然而,在线性算子复合的非光滑函数具有利普希茨连续性这一额外假设下,我们可以通过莫罗包络正则化推导出新颖的算法。此外,我们通过随机预言机调用处理大规模问题,这与随机梯度技术非常相似。文中给出了在全变差去噪和去模糊以及矩阵分解方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a46/7581594/4ed2ad7aa640/10915_2020_1332_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验