Suppr超能文献

弱凸复合函数的可变平滑处理

Variable Smoothing for Weakly Convex Composite Functions.

作者信息

Böhm Axel, Wright Stephen J

机构信息

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.

Computer Sciences Department and Wisconsin Institute for Discovery, University of Wisconsin-Madison, 1210 W. Dayton St, Madison, WI 53706 USA.

出版信息

J Optim Theory Appl. 2021;188(3):628-649. doi: 10.1007/s10957-020-01800-z. Epub 2021 Feb 8.

Abstract

We study minimization of a structured objective function, being the sum of a smooth function and a composition of a weakly convex function with a linear operator. Applications include image reconstruction problems with regularizers that introduce less bias than the standard convex regularizers. We develop a variable smoothing algorithm, based on the Moreau envelope with a decreasing sequence of smoothing parameters, and prove a complexity of to achieve an -approximate solution. This bound interpolates between the bound for the smooth case and the bound for the subgradient method. Our complexity bound is in line with other works that deal with structured nonsmoothness of weakly convex functions.

摘要

我们研究结构化目标函数的最小化问题,该目标函数是一个光滑函数与一个弱凸函数和线性算子的复合函数之和。其应用包括具有正则化项的图像重建问题,这些正则化项比标准凸正则化项引入的偏差更小。我们基于具有递减平滑参数序列的莫罗包络开发了一种变量平滑算法,并证明实现(\epsilon)-近似解的复杂度为(O(1/\sqrt{\epsilon}))。这个界在光滑情形的(O(1/\epsilon))界和次梯度方法的(O(1/\epsilon^2))界之间进行插值。我们的复杂度界与处理弱凸函数结构化非光滑性的其他工作一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/189f/7929970/e373f1965aeb/10957_2020_1800_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验