Suppr超能文献

海马葡萄糖调节在匹罗卡品诱导癫痫持续状态中的作用。

Role of Modulation of Hippocampal Glucose Following Pilocarpine-Induced Status Epilepticus.

机构信息

Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.

Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.

出版信息

Mol Neurobiol. 2021 Mar;58(3):1217-1236. doi: 10.1007/s12035-020-02173-0. Epub 2020 Oct 29.

Abstract

Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration, mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity, and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 μL) or glucose (GLU; 1, 2 or 3 mM, 1 μL) were administered into hippocampus of male Wistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala, and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an important support of SGLT1.

摘要

癫痫持续状态(SE)定义为持续且自我维持的癫痫发作,其引发海马神经退行性变、线粒体功能障碍、氧化应激和能量衰竭。在 SE 期间,神经元过度兴奋,增加能量消耗。在癫痫状态下,通过海马中的钠葡萄糖协同转运蛋白 1(SGLT1)增加葡萄糖摄取。此外,调节葡萄糖可以防止 SE 引起的神经元损伤。在这里,我们评估了增加葡萄糖可用性对边缘性癫痫发作、记忆功能障碍、神经退行性过程、神经元活性和 SGLT1 表达的影响。在匹罗卡品诱导 SE 之前或之后,将载体(VEH,生理盐水 0.9%,1 μL)或葡萄糖(GLU;1、2 或 3 mM,1 μL)注入雄性 Wistar 大鼠(Rattus norvegicus)的海马体中。在 SE 期间进行 90 分钟的癫痫发作行为分析。通过抑制回避测试分析记忆和学习过程。在 SE 后 24 小时,评估海马体和海马体外区域的神经退行性过程、神经元活性和 SGLT1 表达。海马体葡萄糖的调节并不能保护 SE 后的记忆功能障碍。我们的结果表明,匹罗卡品后给予葡萄糖可降低癫痫发作的严重程度,以及边缘性癫痫发作的次数。同样,SE 后葡萄糖降低了海马体、下托、丘脑、杏仁核和皮质区域的细胞死亡和神经元活性。最后,葡萄糖输注提高了海马体中的 SGLT1 表达。总之,我们的数据表明,海马体内葡萄糖的给药可能通过对 SGLT1 的重要支持,在癫痫发生过程的早期阶段保护大脑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验