Mei Feng, Guo Qihao, Yu Ya-Fei, Xiao Liantuan, Zhu Shi-Liang, Jia Suotang
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China.
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China.
Phys Rev Lett. 2020 Oct 16;125(16):160503. doi: 10.1103/PhysRevLett.125.160503.
Simulating the topological phases of matter in synthetic quantum simulators is a topic of considerable interest. Given the universality of digital quantum simulators, the prospect of digitally simulating exotic topological phases is greatly enhanced. However, it is still an open question how to realize the digital quantum simulation of topological phases of matter. Here, using common single- and two-qubit elementary quantum gates, we propose and demonstrate an approach to design topologically protected quantum circuits on the current generation of noisy quantum processors where spin-orbital coupling and related topological matter can be digitally simulated. In particular, a low-depth topological quantum circuit is performed on both the IBM and Rigetti quantum processors. In the experiments, we not only observe but also distinguish the 0 and π energy topological edge states by measuring the qubit excitation distribution at the output of the circuits.
在合成量子模拟器中模拟物质的拓扑相是一个备受关注的话题。鉴于数字量子模拟器的通用性,数字模拟奇异拓扑相的前景得到了极大提升。然而,如何实现物质拓扑相的数字量子模拟仍然是一个悬而未决的问题。在此,我们使用常见的单比特和双比特基本量子门,提出并演示了一种在当前一代有噪声量子处理器上设计拓扑保护量子电路的方法,其中自旋 - 轨道耦合和相关拓扑物质可以进行数字模拟。特别是,在IBM和Rigetti量子处理器上都执行了一个低深度拓扑量子电路。在实验中,我们不仅观察到了,而且通过测量电路输出处的量子比特激发分布区分了0和π能量拓扑边缘态。