Suppr超能文献

在可编程量子模拟器上观测和编织拓扑 Majorana 模。

Observing and braiding topological Majorana modes on programmable quantum simulators.

机构信息

Department of Physics, Yale University, New Haven, CT, 06520, USA.

IBM Quantum, MIT-IBM Watson AI lab, Cambridge, MA, 02142, USA.

出版信息

Nat Commun. 2023 Apr 21;14(1):2286. doi: 10.1038/s41467-023-37725-0.

Abstract

Electrons are indivisible elementary particles, yet paradoxically a collection of them can act as a fraction of a single electron, exhibiting exotic and useful properties. One such collective excitation, known as a topological Majorana mode, is naturally stable against perturbations, such as unwanted local noise, and can thereby robustly store quantum information. As such, Majorana modes serve as the basic primitive of topological quantum computing, providing resilience to errors. However, their demonstration on quantum hardware has remained elusive. Here, we demonstrate a verifiable identification and braiding of topological Majorana modes using a superconducting quantum processor as a quantum simulator. By simulating fermions on a one-dimensional lattice subject to a periodic drive, we confirm the existence of Majorana modes localized at the edges, and distinguish them from other trivial modes. To simulate a basic logical operation of topological quantum computing known as braiding, we propose a non-adiabatic technique, whose implementation reveals correct braiding statistics in our experiments. This work could further be used to study topological models of matter using circuit-based simulations, and shows that long-sought quantum phenomena can be realized by anyone in cloud-run quantum simulations, whereby accelerating fundamental discoveries in quantum science and technology.

摘要

电子是不可分割的基本粒子,但矛盾的是,它们的集合可以充当单个电子的分数,表现出奇特而有用的性质。这种集体激发被称为拓扑马约拉纳模式,它对诸如不需要的本地噪声等扰动自然稳定,因此可以稳健地存储量子信息。因此,马约拉纳模式是拓扑量子计算的基本基元,为错误提供了弹性。然而,它们在量子硬件上的演示仍然难以捉摸。在这里,我们使用超导量子处理器作为量子模拟器,演示了拓扑马约拉纳模式的可验证识别和编织。通过在一维格点上模拟受周期性驱动的费米子,我们确认了局域在边缘的马约拉纳模式的存在,并将其与其他平凡模式区分开来。为了模拟拓扑量子计算的一个基本逻辑操作——编织,我们提出了一种非绝热技术,其实现揭示了我们实验中的正确编织统计数据。这项工作可以进一步用于使用基于电路的模拟研究物质的拓扑模型,并表明长期以来人们一直寻求的量子现象可以通过在云运行的量子模拟中实现,从而加速量子科学和技术的基础发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bf2/10121601/dce98bcba970/41467_2023_37725_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验