Suppr超能文献

利用2011年以来《医学》杂志100篇高被引论文的数据预测论文引用情况:一项文献计量分析。

Predicting article citations using data of 100 top-cited publications in the journal Medicine since 2011: A bibliometric analysis.

作者信息

Kuo Yu-Chi, Chien Tsair-Wei, Kuo Shu-Chun, Yeh Yu-Tsen, Lin Jui-Chung John, Fong Yao

机构信息

Division of Nephrology, Department of Medicine, Chiali Chi Mei Hospital.

Department of Medical Research.

出版信息

Medicine (Baltimore). 2020 Oct 30;99(44):e22885. doi: 10.1097/MD.0000000000022885.

Abstract

BACKGROUND

Publications regarding the 100 top-cited articles in a given discipline are common, but studies reporting the association between article topics and their citations are lacking. Whether or not reviews and original articles have a higher impact factor than case reports is a point for verification in this study. In addition, article topics that can be used for predicting citations have not been analyzed. Thus, this study aims to METHODS:: We searched PubMed Central and downloaded 100 top-cited abstracts in the journal Medicine (Baltimore) since 2011. Four article types and 7 topic categories (denoted by MeSH terms) were extracted from abstracts. Contributors to these 100 top-cited articles were analyzed. Social network analysis and Sankey diagram analysis were performed to identify influential article types and topic categories. MeSH terms were applied to predict the number of article citations. We then examined the prediction power with the correlation coefficients between MeSH weights and article citations.

RESULTS

The citation counts for the 100 articles ranged from 24 to 127, with an average of 39.1 citations. The most frequent article types were journal articles (82%) and comparative studies (10%), and the most frequent topics were epidemiology (48%) and blood and immunology (36%). The most productive countries were the United States (24%) and China (23%). The most cited article (PDID = 27258521) with a count of 135 was written by Dr Shang from Shandong Provincial Hospital Affiliated to Shandong University (China) in 2016. MeSH terms were evident in the prediction power of the number of article citations (correlation coefficients  = 0.49, t = 5.62).

CONCLUSION

The breakthrough was made by developing dashboards showing the overall concept of the 100 top-cited articles using the Sankey diagram. MeSH terms can be used for predicting article citations. Analyzing the 100 top-cited articles could help future academic pursuits and applications in other academic disciplines.

摘要

背景

关于某一特定学科中被引用次数最多的100篇文章的出版物很常见,但缺乏报道文章主题与其引用之间关联的研究。综述和原创文章的影响因子是否高于病例报告,是本研究中有待验证的一点。此外,尚未分析可用于预测引用次数的文章主题。因此,本研究旨在

方法

我们检索了PubMed Central并下载了自2011年以来《医学(巴尔的摩)》杂志中被引用次数最多的100篇摘要。从摘要中提取了四种文章类型和七个主题类别(用医学主题词表示)。对这100篇被引用次数最多的文章的作者进行了分析。进行了社会网络分析和桑基图分析,以确定有影响力的文章类型和主题类别。使用医学主题词来预测文章的引用次数。然后,我们通过医学主题词权重与文章引用之间的相关系数来检验预测能力。

结果

这100篇文章的引用次数在24至127次之间,平均引用次数为39.1次。最常见的文章类型是期刊文章(82%)和比较研究(10%),最常见的主题是流行病学(48%)和血液与免疫学(36%)。发文量最多的国家是美国(24%)和中国(23%)。被引用次数最多的文章(PDID = 27258521)被引用了135次,由山东大学附属山东省立医院的尚医生(中国)于2016年撰写。医学主题词在文章引用次数的预测能力方面很明显(相关系数 = 0.49,t = 5.62)。

结论

通过使用桑基图开发展示100篇被引用次数最多文章总体概念的仪表盘取得了突破。医学主题词可用于预测文章引用次数。分析这100篇被引用次数最多的文章有助于未来的学术追求以及在其他学术领域中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c3/7598835/8071af7c6c0f/medi-99-e22885-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验