Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada;
Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
J Nucl Med. 2021 Jul 1;62(7):1006-1011. doi: 10.2967/jnumed.120.254656. Epub 2020 Oct 30.
Because of challenges in performing routine personalized dosimetry in radiopharmaceutical therapies, interest in single-time-point (STP) dosimetry, particularly using only a single SPECT scan, is on the rise. Meanwhile, there are questions about the reliability of STP dosimetry, with limited independent validations. In the present work, we analyzed 2 STP dosimetry methods and evaluated dose errors for several radiopharmaceuticals based on effective half-life distributions. We first challenged the common assumption that radiopharmaceutical effective half-lives across the population are gaussian-distributed (i.e., follow a normal distribution). Then, dose accuracy was estimated using 2 STP dosimetry methods for a wide range of potential post injection (p.i.) scan time points for different radiopharmaceuticals applied to neuroendocrine tumors and prostate cancer. The accuracy and limitations of each of the STP methods were discussed. A lognormal distribution was more appropriate for capturing effective half-life distributions. The STP framework was promising for dosimetry of Lu-DOTATATE and for kidney dosimetry of different radiopharmaceuticals (errors < 30%). Meanwhile, for some radiopharmaceuticals, STP accuracy was compromised (e.g., in bone marrow and tumors for -labeled prostate-specific membrane antigen [PSMA])). The optimal SPECT scanning time for Lu-DOTATATE was approximately 72 h p.i., whereas 48 h p.i. was better for Lu-PSMA. Simplified STP dosimetry methods may compromise the accuracy of dose estimates, with some exceptions, such as for Lu-DOTATATE and for kidney dosimetry in different radiopharmaceuticals. Simplified personalized dosimetry in the clinic continues to be challenging. On the basis of our results, we make suggestions and recommendations for improved personalized dosimetry using simplified imaging schemes.
由于放射性药物治疗中常规个体化剂量学的挑战,单次时间点(STP)剂量学的兴趣正在上升,尤其是仅使用单次 SPECT 扫描。与此同时,STP 剂量学的可靠性存在疑问,缺乏独立验证。在本工作中,我们分析了 2 种 STP 剂量学方法,并基于有效半衰期分布评估了几种放射性药物的剂量误差。我们首先挑战了放射性药物在人群中的有效半衰期呈高斯分布(即遵循正态分布)的常见假设。然后,我们使用 2 种 STP 剂量学方法,针对不同神经内分泌肿瘤和前列腺癌应用的不同放射性药物,在广泛的潜在注射后(p.i.)扫描时间点上,估算剂量准确性。讨论了每种 STP 方法的准确性和局限性。对数正态分布更适合捕获有效半衰期分布。STP 框架在 Lu-DOTATATE 的剂量学和不同放射性药物的肾脏剂量学中很有前景(误差 < 30%)。同时,对于某些放射性药物,STP 准确性受到影响(例如,-标记的前列腺特异性膜抗原 [PSMA] 在骨髓和肿瘤中的放射性药物)。Lu-DOTATATE 的最佳 SPECT 扫描时间约为 p.i. 72 小时,而 Lu-PSMA 则更好 p.i. 48 小时。简化的 STP 剂量学方法可能会影响剂量估计的准确性,但也存在一些例外,例如 Lu-DOTATATE 和不同放射性药物的肾脏剂量学。简化的临床个体化剂量学仍然具有挑战性。基于我们的结果,我们提出了一些建议,以改善简化成像方案的个体化剂量学。