Istrati D, Pilnyak Y, Loredo J C, Antón C, Somaschi N, Hilaire P, Ollivier H, Esmann M, Cohen L, Vidro L, Millet C, Lemaître A, Sagnes I, Harouri A, Lanco L, Senellart P, Eisenberg H S
Racah Institute of Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France.
Nat Commun. 2020 Oct 30;11(1):5501. doi: 10.1038/s41467-020-19341-4.
Light states composed of multiple entangled photons-such as cluster states-are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology-a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed for linear-cluster states of any number of photons, that are required for photonic one-way quantum computing schemes.
由多个纠缠光子组成的光态——如簇态——对于开发和扩展量子计算网络至关重要。光子簇态可以从单光子源和纠缠门获得,但到目前为止,这仅在概率性源的情况下实现,这些源本质上效率较低,且硬件开销不断增加。在此,我们报告了在占据单个空间模式的线性簇态中高效生成偏振编码、可单独寻址光子的方法。我们采用光纤环配置中的单个纠缠门,依次纠缠源自当前最有效的单光子源技术——半导体量子点——的不断增加的光子流。利用该装置,我们展示了在单模光纤中生成多达四个光子的线性簇态。所报道的架构可以针对光子单向量子计算方案所需的任意数量光子的线性簇态进行编程。