Korpela Joseph, Suzuki Hirokazu, Matsumoto Sakiko, Mizutani Yuichi, Samejima Masaki, Maekawa Takuya, Nakai Junichi, Yoda Ken
Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 565-0871, Japan.
Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
Commun Biol. 2020 Oct 30;3(1):633. doi: 10.1038/s42003-020-01356-8.
Unravelling the secrets of wild animals is one of the biggest challenges in ecology, with bio-logging (i.e., the use of animal-borne loggers or bio-loggers) playing a pivotal role in tackling this challenge. Bio-logging allows us to observe many aspects of animals' lives, including their behaviours, physiology, social interactions, and external environment. However, bio-loggers have short runtimes when collecting data from resource-intensive (high-cost) sensors. This study proposes using AI on board video-loggers in order to use low-cost sensors (e.g., accelerometers) to automatically detect and record complex target behaviours that are of interest, reserving their devices' limited resources for just those moments. We demonstrate our method on bio-loggers attached to seabirds including gulls and shearwaters, where it captured target videos with 15 times the precision of a baseline periodic-sampling method. Our work will provide motivation for more widespread adoption of AI in bio-loggers, helping us to shed light onto until now hidden aspects of animals' lives.
揭开野生动物的秘密是生态学中最大的挑战之一,而生物记录(即使用动物携带的记录器或生物记录器)在应对这一挑战中发挥着关键作用。生物记录使我们能够观察动物生活的许多方面,包括它们的行为、生理、社会互动和外部环境。然而,当从资源密集型(高成本)传感器收集数据时,生物记录器的运行时间较短。本研究建议在视频记录器上使用人工智能,以便使用低成本传感器(如加速度计)自动检测和记录感兴趣的复杂目标行为,将设备的有限资源仅保留用于这些时刻。我们在附着于海鸥和剪水鹱等海鸟的生物记录器上展示了我们的方法,该方法捕获目标视频的精度是基线定期采样方法的15倍。我们的工作将为人工智能在生物记录器中的更广泛应用提供动力,帮助我们揭示动物生活中迄今为止隐藏的方面。