Suppr超能文献

铜代谢在酿酒酵母中的研究进展。

Copper metabolism in Saccharomyces cerevisiae: an update.

机构信息

Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.

Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.

出版信息

Biometals. 2021 Feb;34(1):3-14. doi: 10.1007/s10534-020-00264-y. Epub 2020 Oct 30.

Abstract

Copper is an essential element in all forms of life. It acts as a cofactor of some enzymes and is involved in forming proper protein conformations. However, excess copper ions in cells are detrimental as they can generate free radicals or disrupt protein structures. Therefore, all life forms have evolved conserved and exquisite copper metabolic systems to maintain copper homeostasis. The yeast Saccharomyces cerevisiae has been widely used to investigate copper metabolism as it is convenient for this purpose. In this review, we summarize the mechanism of copper metabolism in Saccharomyces cerevisiae according to the latest literature. In brief, bioavailable copper ions are incorporated into yeast cells mainly via the high-affinity transporters Ctr1 and Ctr3. Then, intracellular Cu ions are delivered to different organelles or cuproproteins by different chaperones, including Ccs1, Atx1, and Cox17. Excess copper ions bind to glutathione (GSH), metallothioneins, and copper complexes are sequestered into vacuoles to avoid toxicity. Copper-sensing transcription factors Ace1 and Mac1 regulate the expression of genes involved in copper detoxification and uptake/mobilization in response to changes in intracellular copper levels. Though numerous recent breakthroughs in understanding yeast's copper metabolism have been achieved, some issues remain unresolved. Completely elucidating the mechanism of copper metabolism in yeast helps decode the corresponding system in humans and understand how copper-related diseases develop.

摘要

铜是所有生命形式的必需元素。它作为一些酶的辅助因子,并参与形成适当的蛋白质构象。然而,细胞内过量的铜离子是有害的,因为它们可以产生自由基或破坏蛋白质结构。因此,所有生命形式都进化出保守而精致的铜代谢系统来维持铜的体内平衡。酵母酿酒酵母因其目的而被广泛用于研究铜代谢。在这篇综述中,我们根据最新的文献总结了酿酒酵母铜代谢的机制。简而言之,生物可利用的铜离子主要通过高亲和力转运蛋白 Ctr1 和 Ctr3 进入酵母细胞。然后,细胞内的 Cu 离子通过不同的伴侣蛋白(包括 Ccs1、Atx1 和 Cox17)递送到不同的细胞器或铜蛋白中。过量的铜离子与谷胱甘肽 (GSH) 结合,金属硫蛋白将铜复合物螯合到液泡中以避免毒性。铜感应转录因子 Ace1 和 Mac1 响应细胞内铜水平的变化,调节参与铜解毒和摄取/动员的基因的表达。尽管在理解酵母铜代谢方面取得了许多新的突破,但仍有一些问题尚未解决。完全阐明酵母的铜代谢机制有助于解码人类相应的系统,并了解铜相关疾病的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验