Suppr超能文献

用于持续学习和记忆的神经抑制

Neural inhibition for continual learning and memory.

作者信息

Barron Helen C

机构信息

Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK.

出版信息

Curr Opin Neurobiol. 2021 Apr;67:85-94. doi: 10.1016/j.conb.2020.09.007. Epub 2020 Oct 28.

Abstract

Humans are able to continually learn new information and acquire skills that meet the demands of an ever-changing environment. Yet, this new learning does not necessarily occur at the expense of old memories. The specialised biological mechanisms that permit continual learning in humans and other mammals are not fully understood. Here I explore the possibility that neural inhibition plays an important role. I present recent findings from studies in humans that suggest inhibition regulates the stability of neural networks to gate cortical plasticity and memory retrieval. These studies use non-invasive methods to obtain an indirect measure of neural inhibition and corroborate comparable findings in animals. Together these studies reveal a model whereby neural inhibition protects memories from interference to permit continual learning. Neural inhibition may, therefore, play a critical role in the computations that underlie higher-order cognition and adaptive behaviour.

摘要

人类能够持续学习新信息并掌握满足不断变化环境需求的技能。然而,这种新的学习并不一定会以牺牲旧记忆为代价。允许人类和其他哺乳动物持续学习的特殊生物学机制尚未完全被理解。在此,我探讨神经抑制发挥重要作用的可能性。我展示了来自人体研究的最新发现,这些发现表明抑制作用调节神经网络的稳定性,以控制皮层可塑性和记忆检索。这些研究使用非侵入性方法来间接测量神经抑制,并证实了在动物身上的类似发现。这些研究共同揭示了一个模型,即神经抑制保护记忆免受干扰以允许持续学习。因此,神经抑制可能在构成高阶认知和适应性行为基础的计算中发挥关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3407/8202512/85333713fb8a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验