Suppr超能文献

基于扩散 MRI 的骨肉瘤自动分割和 RECIST 评分评估:一个计算机辅助系统处理过程。

Automatic segmentation and RECIST score evaluation in osteosarcoma using diffusion MRI: A computer aided system process.

机构信息

Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.

Department of Radio Diagnosis, All India Institute of Medical Sciences, New Delhi, India.

出版信息

Eur J Radiol. 2020 Dec;133:109359. doi: 10.1016/j.ejrad.2020.109359. Epub 2020 Oct 20.

Abstract

PURPOSE

Accuracy and consistency in RECIST (Response evaluation criteria in solid tumors) measurements are crucial for treatment planning. Manual RECIST measurement is tedious, prone-to-error and operator-subjective. Objective was to develop a fully automated system for tumor segmentation and RECIST score estimation with reasonable accuracy, consistency and speed.

METHODS

Diffusion weight images (DWI) of forty patients (N = 40; Male:Female = 30:10; Age = 17.7 ± 5.9years) with Osteosarcoma was acquired using 1.5 T MRI scanner before (baseline) and after neoadjuvant chemotherapy (follow-up). 3D tumor volume was segmented applying Simple-linear-iterative-clustering Superpixels (SLIC-S) and Fuzzy-c-means-clustering (FCM) separately. Connected-component-analysis was performed to identify image-slice with maximum tumor-burden (Max-burden-sliceno) and measure tumor-sizes (Tumor-diameter(cm) & Tumor-volume(cc)). Relative-percentage-changes in tumor-sizes across time-points were scored using RECIST1.1 and Volumetric-response criterion. Segmentation accuracy was estimated by Dice-coefficient (DC), Jaccard-Index (JI), Precision (P) and Recall (R). Evaluated Apparent-diffusion-coefficient (ADC), Tumor-diameter, Max-burden-sliceno and Tumor-volume in segmented tumor-mask and ground-truth tumor-mask were compared using paired-t-test (p < 0.05), Pearson-correlation-coefficient(PCC) and Bland-Altman plots. Misclassification-error-rate (MER) was evaluated for automated RECIST1.1 and Volumetric-response scoring methods.

RESULTS

Automated SLIC-S and FCM produced satisfactory tumor segmentation (DC:∼70-83%;JI:∼55-72%;P:∼64-85%;R:∼73-83%) and showed excellent correlation with ground-truth measurements in estimating ADC (p > 0.05; PCC=0.84-0.89), Tumor-diameters (p > 0.05; PCC=0.90-0.95; bias=0.3-2.41), Max-burden-sliceno (p > 0.05; PCC=0.87-0.96) and Tumor-volumes (p > 0.05; PCC=0.89-0.94; bias=15.19-131.81) at baseline and follow-up. MER for SLIC-S and FCM were comparable for RECIST1.1 (15-18 %) and Volumetric-response (18-20 %) scores and assessment times were 2-3s and 4-6s per patient respectively.

CONCLUSIONS

Proposed method produced promising segmentation and RECIST score measurements in current bone tumor dataset and might be useful as decision-support-tool for response evaluation in other tumors.

摘要

目的

在肿瘤治疗计划中,RECIST(实体瘤反应评估标准)测量的准确性和一致性至关重要。手动 RECIST 测量既繁琐又容易出错,且具有操作者主观性。本研究旨在开发一种全自动的肿瘤分割和 RECIST 评分估计系统,以实现合理的准确性、一致性和速度。

方法

使用 1.5T MRI 扫描仪在接受新辅助化疗之前(基线)和之后,对 40 名患有骨肉瘤的患者(N=40;男:女=30:10;年龄=17.7±5.9 岁)进行扩散加权成像(DWI)扫描。分别采用 Simple-linear-iterative-clustering Superpixels(SLIC-S)和 Fuzzy-c-means-clustering(FCM)对 3D 肿瘤体积进行分割。通过连通分量分析来识别具有最大肿瘤负荷的图像切片(最大负荷切片号 Max-burden-sliceno)并测量肿瘤大小(肿瘤直径 cm 和肿瘤体积 cc)。使用 RECIST1.1 和容积反应标准对各时间点的肿瘤大小进行相对百分比变化评分。通过 Dice 系数(DC)、Jaccard 指数(JI)、精度(P)和召回率(R)来评估分割准确性。比较分割肿瘤掩模和真实肿瘤掩模的表观扩散系数(ADC)、肿瘤直径、最大负荷切片号和肿瘤体积,采用配对 t 检验(p<0.05)、皮尔逊相关系数(PCC)和 Bland-Altman 图进行评估。评估自动 RECIST1.1 和容积反应评分方法的错误分类误差率(MER)。

结果

自动 SLIC-S 和 FCM 产生了令人满意的肿瘤分割(DC:70-83%;JI:55-72%;P:64-85%;R:73-83%),并在估计 ADC(p>0.05;PCC=0.84-0.89)、肿瘤直径(p>0.05;PCC=0.90-0.95;偏差=0.3-2.41)、最大负荷切片号(p>0.05;PCC=0.87-0.96)和肿瘤体积(p>0.05;PCC=0.89-0.94;偏差=15.19-131.81)时,与真实测量值具有极好的相关性。SLIC-S 和 FCM 的 MER 对于 RECIST1.1(15-18%)和容积反应(18-20%)评分是可比的,评估时间分别为每个患者 2-3 秒和 4-6 秒。

结论

在当前骨肿瘤数据集的研究中,该方法产生了有前途的分割和 RECIST 评分测量结果,并且可能成为其他肿瘤反应评估的决策支持工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验