Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
Department of Radio Diagnosis, All India Institute of Medical Sciences, New Delhi, India.
Eur J Radiol. 2020 Dec;133:109359. doi: 10.1016/j.ejrad.2020.109359. Epub 2020 Oct 20.
Accuracy and consistency in RECIST (Response evaluation criteria in solid tumors) measurements are crucial for treatment planning. Manual RECIST measurement is tedious, prone-to-error and operator-subjective. Objective was to develop a fully automated system for tumor segmentation and RECIST score estimation with reasonable accuracy, consistency and speed.
Diffusion weight images (DWI) of forty patients (N = 40; Male:Female = 30:10; Age = 17.7 ± 5.9years) with Osteosarcoma was acquired using 1.5 T MRI scanner before (baseline) and after neoadjuvant chemotherapy (follow-up). 3D tumor volume was segmented applying Simple-linear-iterative-clustering Superpixels (SLIC-S) and Fuzzy-c-means-clustering (FCM) separately. Connected-component-analysis was performed to identify image-slice with maximum tumor-burden (Max-burden-sliceno) and measure tumor-sizes (Tumor-diameter(cm) & Tumor-volume(cc)). Relative-percentage-changes in tumor-sizes across time-points were scored using RECIST1.1 and Volumetric-response criterion. Segmentation accuracy was estimated by Dice-coefficient (DC), Jaccard-Index (JI), Precision (P) and Recall (R). Evaluated Apparent-diffusion-coefficient (ADC), Tumor-diameter, Max-burden-sliceno and Tumor-volume in segmented tumor-mask and ground-truth tumor-mask were compared using paired-t-test (p < 0.05), Pearson-correlation-coefficient(PCC) and Bland-Altman plots. Misclassification-error-rate (MER) was evaluated for automated RECIST1.1 and Volumetric-response scoring methods.
Automated SLIC-S and FCM produced satisfactory tumor segmentation (DC:∼70-83%;JI:∼55-72%;P:∼64-85%;R:∼73-83%) and showed excellent correlation with ground-truth measurements in estimating ADC (p > 0.05; PCC=0.84-0.89), Tumor-diameters (p > 0.05; PCC=0.90-0.95; bias=0.3-2.41), Max-burden-sliceno (p > 0.05; PCC=0.87-0.96) and Tumor-volumes (p > 0.05; PCC=0.89-0.94; bias=15.19-131.81) at baseline and follow-up. MER for SLIC-S and FCM were comparable for RECIST1.1 (15-18 %) and Volumetric-response (18-20 %) scores and assessment times were 2-3s and 4-6s per patient respectively.
Proposed method produced promising segmentation and RECIST score measurements in current bone tumor dataset and might be useful as decision-support-tool for response evaluation in other tumors.
在肿瘤治疗计划中,RECIST(实体瘤反应评估标准)测量的准确性和一致性至关重要。手动 RECIST 测量既繁琐又容易出错,且具有操作者主观性。本研究旨在开发一种全自动的肿瘤分割和 RECIST 评分估计系统,以实现合理的准确性、一致性和速度。
使用 1.5T MRI 扫描仪在接受新辅助化疗之前(基线)和之后,对 40 名患有骨肉瘤的患者(N=40;男:女=30:10;年龄=17.7±5.9 岁)进行扩散加权成像(DWI)扫描。分别采用 Simple-linear-iterative-clustering Superpixels(SLIC-S)和 Fuzzy-c-means-clustering(FCM)对 3D 肿瘤体积进行分割。通过连通分量分析来识别具有最大肿瘤负荷的图像切片(最大负荷切片号 Max-burden-sliceno)并测量肿瘤大小(肿瘤直径 cm 和肿瘤体积 cc)。使用 RECIST1.1 和容积反应标准对各时间点的肿瘤大小进行相对百分比变化评分。通过 Dice 系数(DC)、Jaccard 指数(JI)、精度(P)和召回率(R)来评估分割准确性。比较分割肿瘤掩模和真实肿瘤掩模的表观扩散系数(ADC)、肿瘤直径、最大负荷切片号和肿瘤体积,采用配对 t 检验(p<0.05)、皮尔逊相关系数(PCC)和 Bland-Altman 图进行评估。评估自动 RECIST1.1 和容积反应评分方法的错误分类误差率(MER)。
自动 SLIC-S 和 FCM 产生了令人满意的肿瘤分割(DC:70-83%;JI:55-72%;P:64-85%;R:73-83%),并在估计 ADC(p>0.05;PCC=0.84-0.89)、肿瘤直径(p>0.05;PCC=0.90-0.95;偏差=0.3-2.41)、最大负荷切片号(p>0.05;PCC=0.87-0.96)和肿瘤体积(p>0.05;PCC=0.89-0.94;偏差=15.19-131.81)时,与真实测量值具有极好的相关性。SLIC-S 和 FCM 的 MER 对于 RECIST1.1(15-18%)和容积反应(18-20%)评分是可比的,评估时间分别为每个患者 2-3 秒和 4-6 秒。
在当前骨肿瘤数据集的研究中,该方法产生了有前途的分割和 RECIST 评分测量结果,并且可能成为其他肿瘤反应评估的决策支持工具。