Suppr超能文献

基于 SLIC 超体素的多参数磁共振成像评价骨肉瘤新辅助化疗反应。

SLIC-supervoxels-based response evaluation of osteosarcoma treated with neoadjuvant chemotherapy using multi-parametric MR imaging.

机构信息

Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Department of Radiology, All India Institute of Medical Sciences, New Delhi, India.

出版信息

Eur Radiol. 2020 Jun;30(6):3125-3136. doi: 10.1007/s00330-019-06647-1. Epub 2020 Feb 21.

Abstract

OBJECTIVE

Histopathological examination (HPE) is the current gold standard for assessing chemotherapy response to tumor, but it is possible only after surgery. The purpose of the study was to develop a noninvasive, imaging-based robust method to delineate, visualize, and quantify the proportions of necrosis and viable tissue present within the tumor along with peritumoral edema before and after neoadjuvant chemotherapy (NACT) and to evaluate treatment response with correlation to HPE necrosis after surgery.

METHODS

The MRI dataset of 30 patients (N = 30; male:female = 24:6; age = 17.6 ± 2.7 years) with osteosarcoma was acquired using 1.5 T Philips Achieva MRI scanner before (baseline) and after 3 cycles of NACT (follow-up). After NACT, all patients underwent surgical resection followed by HPE. Simple linear iterative clustering supervoxels and Otsu multithresholding were combined to develop the proposed method-SLICs+MTh-to subsegment and quantify viable and nonviable regions within tumor using multiparametric MRI. Manually drawn ground-truth ROIs and SLICs+MTh-based segmentation of tumor, edema, and necrosis were compared using Jacquard index (JI), Dice coefficient (DC), precision (P), and recall (R). Postcontrast T1W images (PC-T1W) were used to validate the SLICs+MTh-based necrosis. SLICs+MTh-based necrosis volume at follow-up was compared with HPE necrosis using paired t test (p ≤ 0.05).

RESULTS

Active tumor, necrosis, and edema were segmented with moderate to satisfactory accuracy (JI = 62-78%; DC = 72-87%; P = 67-87%; R = 63-88%). Qualitatively and quantitatively (DC = 74 ± 9%), the SLICs+MTh-based necrosis area correlated well with the hypointense necrosis areas in PC-T1W. No significant difference (paired t test, p = 0.26; Bland-Altman plot, bias = 2.47) between SLICs+MTh-based necrosis at follow-up and HPE necrosis was observed.

CONCLUSION

The proposed multiparametric MRI-based SLICs+MTh method performs noninvasive assessment of NACT response in osteosarcoma that may improve cancer treatment monitoring, planning, and overall prognosis.

KEY POINTS

• The simple linear iterative clustering supervoxels and Otsu multithresholding-based technique (SLICs+MTh) successfully estimates the proportion of necrosis, viable tumor, and edema in osteosarcoma in the course of chemotherapy. • The proposed technique is noninvasive and uses multiparametric MRI to measure necrosis as an indication of anticancer treatment response. • SLICs+MTh-based necrosis was in satisfactory agreement with histological necrosis after surgery.

摘要

目的

组织病理学检查(HPE)是目前评估肿瘤化疗反应的金标准,但只有在手术后才能进行。本研究旨在开发一种非侵入性、基于成像的可靠方法,在新辅助化疗(NACT)前后描绘、可视化和量化肿瘤内坏死和存活组织的比例以及肿瘤周围水肿,并通过与手术后 HPE 坏死的相关性来评估治疗反应。

方法

使用 1.5T 飞利浦 Achieva MRI 扫描仪对 30 例(N=30;男:女=24:6;年龄=17.6±2.7 岁)骨肉瘤患者进行 MRI 数据集采集,分别在基线和 NACT 后 3 个周期(随访)时进行。NACT 后,所有患者均行手术切除,随后行 HPE。采用简单线性迭代聚类超体素(SLICs)和 Otsu 多阈值技术(MTh)相结合的方法开发了所提出的方法-SLICs+MTh,用于使用多参数 MRI 对肿瘤内的存活和非存活区域进行亚分割和量化。使用Jacquard 指数(JI)、Dice 系数(DC)、精度(P)和召回率(R)比较手动绘制的真实感兴趣区(ROI)和基于 SLICs+MTh 的肿瘤、水肿和坏死分割。使用对比后 T1W 图像(PC-T1W)验证基于 SLICs+MTh 的坏死。使用配对 t 检验(p≤0.05)比较随访时基于 SLICs+MTh 的坏死体积与 HPE 坏死体积。

结果

主动肿瘤、坏死和水肿的分割具有中等至满意的准确性(JI=62-78%;DC=72-87%;P=67-87%;R=63-88%)。基于 SLICs+MTh 的坏死区域在定性和定量上(DC=74±9%)与 PC-T1W 中的低信号坏死区域具有良好的相关性。在随访时基于 SLICs+MTh 的坏死与 HPE 坏死之间未观察到显著差异(配对 t 检验,p=0.26;Bland-Altman 图,偏差=2.47)。

结论

本研究提出的基于多参数 MRI 的 SLICs+MTh 方法可无创评估骨肉瘤中 NACT 的反应,可能有助于改善癌症治疗的监测、计划和整体预后。

关键点

  • 简单线性迭代聚类超体素(SLICs)和 Otsu 多阈值技术(MTh)相结合的技术(SLICs+MTh)成功估计了骨肉瘤化疗过程中坏死、存活肿瘤和水肿的比例。

  • 该技术是非侵入性的,使用多参数 MRI 测量坏死作为抗癌治疗反应的指标。

  • 基于 SLICs+MTh 的坏死与手术后的组织学坏死具有良好的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验