Suppr超能文献

TREAP:一种新的拓扑方法用于药物靶点推断。

TREAP: A New Topological Approach to Drug Target Inference.

机构信息

Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania.

Department of Systems Biology, Columbia University, New York, New York; Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.

出版信息

Biophys J. 2020 Dec 1;119(11):2290-2298. doi: 10.1016/j.bpj.2020.10.021. Epub 2020 Oct 29.

Abstract

Over 50% of drugs fail in stage 3 clinical trials, many because of a poor understanding of the drug's mechanisms of action (MoA). A better comprehension of drug MoA will significantly improve research and development (R&D). Current proposed algorithms, such as ProTINA and DeMAND, can be overly complex. Additionally, they are unable to predict whether the drug-induced gene expression or the topology of the networks used to model gene regulation primarily impacts accurate drug target inference. In this work, we evaluate how network and gene expression data affect ProTINA's accuracy. We find that network topology predominantly determines the accuracy of ProTINA's predictions. We further show that the size of an interaction network and/or selecting cell-specific networks has a limited effect on accuracy. We then demonstrate that a specific network topology measure, betweenness, can be used to improve drug target prediction. Based on these results, we create a new algorithm, TREAP, that combines betweenness values and adjusted p-values for target inference. TREAP offers an alternative approach to drug target inference and is advantageous because it is not computationally demanding, provides easy-to-interpret results, and is often more accurate at predicting drug targets than current state-of-the-art approaches.

摘要

超过 50%的药物在第三阶段临床试验中失败,其中许多是因为对药物作用机制(MoA)的理解不佳。更好地理解药物 MoA 将显著改善研究和开发(R&D)。目前提出的算法,如 ProTINA 和 DeMAND,可能过于复杂。此外,它们无法预测是药物诱导的基因表达还是用于模拟基因调控的网络拓扑结构主要影响准确的药物靶点推断。在这项工作中,我们评估了网络和基因表达数据如何影响 ProTINA 的准确性。我们发现网络拓扑结构主要决定了 ProTINA 预测的准确性。我们进一步表明,交互网络的大小和/或选择特定于细胞的网络对准确性的影响有限。然后,我们证明了一种特定的网络拓扑度量——介数,可以用于改进药物靶点预测。基于这些结果,我们创建了一个新的算法 TREAP,该算法将介数值和调整后的 p 值结合起来进行目标推断。TREAP 为药物靶点推断提供了一种替代方法,其优势在于它计算量不大,提供易于解释的结果,并且通常比当前最先进的方法更准确地预测药物靶点。

相似文献

1
TREAP: A New Topological Approach to Drug Target Inference.
Biophys J. 2020 Dec 1;119(11):2290-2298. doi: 10.1016/j.bpj.2020.10.021. Epub 2020 Oct 29.
2
Netter: re-ranking gene network inference predictions using structural network properties.
BMC Bioinformatics. 2016 Feb 9;17:76. doi: 10.1186/s12859-016-0913-0.
3
Network predicting drug's anatomical therapeutic chemical code.
Bioinformatics. 2013 May 15;29(10):1317-24. doi: 10.1093/bioinformatics/btt158. Epub 2013 Apr 5.
4
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
BMC Syst Biol. 2018 Dec 14;12(Suppl 7):115. doi: 10.1186/s12918-018-0635-1.
5
Network inference with ensembles of bi-clustering trees.
BMC Bioinformatics. 2019 Oct 28;20(1):525. doi: 10.1186/s12859-019-3104-y.
7
NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.
PLoS One. 2014 Mar 25;9(3):e92709. doi: 10.1371/journal.pone.0092709. eCollection 2014.
8
IRIS: a method for reverse engineering of regulatory relations in gene networks.
BMC Bioinformatics. 2009 Dec 23;10:444. doi: 10.1186/1471-2105-10-444.
9
ModularBoost: an efficient network inference algorithm based on module decomposition.
BMC Bioinformatics. 2021 Mar 24;22(1):153. doi: 10.1186/s12859-021-04074-y.
10
Large scale gene regulatory network inference with a multi-level strategy.
Mol Biosyst. 2016 Feb;12(2):588-97. doi: 10.1039/c5mb00560d.

本文引用的文献

1
Prioritizing target-disease associations with novel safety and efficacy scoring methods.
Sci Rep. 2019 Jul 8;9(1):9852. doi: 10.1038/s41598-019-46293-7.
2
Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Matrix Completion.
Biomed Res Int. 2018 Dec 2;2018:1425608. doi: 10.1155/2018/1425608. eCollection 2018.
3
Capturing context-specific regulation in molecular interaction networks.
BMC Bioinformatics. 2018 Dec 22;19(1):539. doi: 10.1186/s12859-018-2513-7.
4
Network-Guided Discovery of Influenza Virus Replication Host Factors.
mBio. 2018 Dec 18;9(6):e02002-18. doi: 10.1128/mBio.02002-18.
5
Integrating Biological Networks for Drug Target Prediction and Prioritization.
Methods Mol Biol. 2019;1903:203-218. doi: 10.1007/978-1-4939-8955-3_12.
7
Drug repurposing: progress, challenges and recommendations.
Nat Rev Drug Discov. 2019 Jan;18(1):41-58. doi: 10.1038/nrd.2018.168. Epub 2018 Oct 12.
8
InDePTH: detection of hub genes for developing gene expression networks under anticancer drug treatment.
Oncotarget. 2018 Jun 26;9(49):29097-29111. doi: 10.18632/oncotarget.25624.
10
TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions.
Nucleic Acids Res. 2018 Jan 4;46(D1):D380-D386. doi: 10.1093/nar/gkx1013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验