Suppr超能文献

从虫媒传染病的流行病学模型中得出风险图:最新技术和最佳实践建议。

Deriving risk maps from epidemiological models of vector borne diseases: State-of-the-art and suggestions for best practice.

机构信息

Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.

Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.

出版信息

Epidemics. 2020 Dec;33:100411. doi: 10.1016/j.epidem.2020.100411. Epub 2020 Oct 22.

Abstract

Epidemiological models (EMs) are widely used to predict the temporal outbreak risk of vector-borne diseases (VBDs). EMs typically use the basic reproduction number (R), a threshold quantity, to indicate risk. To provide an overall view of the risk, these model outputs can be transformed into spatial risk maps, using various aggregation methods (e.g. average R over time, cumulative number of days with R > 1). However, there is no standardized methodology available for this. Depending on the specific aggregation methods used, the yielded spatial risk maps may have considerably different interpretations. Additionally, the method used to visualize the aggregated data also affects the perceived spatial patterns. In this review, we compare commonly used aggregation and visualization methods and discuss the respective interpretation of risk maps. Research publications using epidemiological modelling methods were drawn from Web of Science. Only publications containing maps of R transformed from EMs were considered for the analysis. An example EM was applied to illustrate how aggregation and visualization methods affect the final presentations of risk maps. Risk maps can be generated to show duration, intensity and spatio-temporal dynamics of potential outbreak risk of VBDs. We show that 1) different temporal aggregation methods lead to different interpretations; 2) similar spatial patterns do not necessarily bear the same meaning; 3) visualization methods considerably affect how results are perceived, and thus should be applied with caution. We recommend mapping both intensity and duration of the VBD outbreak risk, using small time-steps to show spatio-temporal dynamics when possible.

摘要

流行病学模型(EMs)被广泛用于预测虫媒传染病(VBDs)的时间爆发风险。EMs 通常使用基本繁殖数(R),一个阈值,来表示风险。为了全面了解风险,可以使用各种聚合方法(例如,随时间变化的平均 R、R>1 的天数累计数)将模型输出转换为空间风险图。然而,目前还没有标准化的方法可供使用。根据使用的具体聚合方法,生成的空间风险图可能会有截然不同的解释。此外,聚合数据的可视化方法也会影响感知到的空间模式。在这篇综述中,我们比较了常用的聚合和可视化方法,并讨论了风险图的各自解释。从 Web of Science 中提取了使用流行病学建模方法的研究出版物。只有包含从 EMs 转换而来的 R 图的出版物才被考虑用于分析。应用一个示例 EM 来说明聚合和可视化方法如何影响风险图的最终呈现。可以生成风险图以显示 VBD 潜在爆发风险的持续时间、强度和时空动态。我们表明:1)不同的时间聚合方法会导致不同的解释;2)相似的空间模式不一定具有相同的含义;3)可视化方法会极大地影响结果的感知,因此应谨慎应用。我们建议使用小的时间步长映射 VBD 爆发风险的强度和持续时间,以显示时空动态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验