Anhui Engineering Research Center for Intelligent Computing and Application on Cognitive Behavior (ICACB), College of Computer Science and Technology, Huaibei Normal University, Huaibei, Anhui, China.
Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
PLoS One. 2023 Jul 13;18(7):e0288658. doi: 10.1371/journal.pone.0288658. eCollection 2023.
Manual image segmentation consumes time. An automatic and accurate method to segment multimodal brain tumors using context information rich three-dimensional medical images that can be used for clinical treatment decisions and surgical planning is required. However, it is a challenge to use deep learning to achieve accurate segmentation of medical images due to the diversity of tumors and the complex boundary interactions between sub-regions while limited computing resources hinder the construction of efficient neural networks. We propose a feature fusion module based on a hierarchical decoupling convolution network and an attention mechanism to improve the performance of network segmentation. We replaced the skip connections of U-shaped networks with a feature fusion module to solve the category imbalance problem, thus contributing to the segmentation of more complicated medical images. We introduced a global attention mechanism to further integrate the features learned by the encoder and explore the context information. The proposed method was evaluated for enhance tumor, whole tumor, and tumor core, achieving Dice similarity coefficient metrics of 0.775, 0.900, and 0.827, respectively, on the BraTS 2019 dataset and 0.800, 0.902, and 0.841, respectively on the BraTS 2018 dataset. The results show that our proposed method is inherently general and is a powerful tool for brain tumor image studies. Our code is available at: https://github.com/WSake/Feature-interaction-network-based-on-Hierarchical-Decoupled-Convolution.
手动图像分割需要耗费时间。因此,我们需要一种能够利用富含上下文信息的三维医学图像自动、准确地对多模态脑肿瘤进行分割的方法,从而为临床治疗决策和手术规划提供支持。然而,由于肿瘤的多样性以及子区域之间复杂的边界相互作用,利用深度学习实现医学图像的精确分割具有一定的挑战性,而有限的计算资源则阻碍了高效神经网络的构建。我们提出了一种基于分层解耦卷积网络和注意力机制的特征融合模块,以提高网络分割性能。我们用特征融合模块替代 U 型网络的跳跃连接,以解决类别不平衡问题,从而有助于分割更复杂的医学图像。我们引入了全局注意力机制,进一步整合编码器学习到的特征,并探索上下文信息。在 BraTS 2019 数据集上,我们的方法在增强肿瘤、全肿瘤和肿瘤核心方面的 Dice 相似系数分别达到了 0.775、0.900 和 0.827,在 BraTS 2018 数据集上的相应指标分别为 0.800、0.902 和 0.841。结果表明,我们的方法具有内在的通用性,是脑肿瘤图像研究的有力工具。我们的代码可在以下网址获取:https://github.com/WSake/Feature-interaction-network-based-on-Hierarchical-Decoupled-Convolution。