Suppr超能文献

提高内切菊粉酶 InuAGN25 的低温活性和热稳定性:增加末端刚性和催化结构域柔性。

Improving low-temperature activity and thermostability of exo-inulinase InuAGN25 on the basis of increasing rigidity of the terminus and flexibility of the catalytic domain.

机构信息

Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.

College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.

出版信息

Bioengineered. 2020 Dec;11(1):1233-1244. doi: 10.1080/21655979.2020.1837476.

Abstract

Enzymes displaying high activity at low temperatures and good thermostability are attracting attention in many studies. However, improving low-temperature activity along with the thermostability of enzymes remains challenging. In this study, the mutant Mut8S, including eight sites (N61E, K156R, P236E, T243K, D268E, T277D, Q390K, and R409D) mutated from the exo-inulinase InuAGN25, was designed on the basis of increasing the number of salt bridges through comparison between the low-temperature-active InuAGN25 and thermophilic exo-inulinases. The recombinant Mut8S, which was expressed in , was digested by human rhinovirus 3 C protease to remove the amino acid fusion sequence at N-terminus, producing RfsMut8S. Compared with wild-type RfsMInuAGN25, the mutant RfsMut8S showed (1) lower root mean square deviation values, (2) lower root mean square fluctuation (RMSF) values of residues in six regions of the N and C termini but higher RMSF values in five regions of the catalytic pocket, (3) higher activity at 0-40°C, and (4) better thermostability at 50°C. This study proposes a way to increase low-temperature activity along with a thermostability improvement of exo-inulinase on the basis of increasing the rigidity of the terminus and the flexibility of the catalytic domain. These findings may prove useful in formulating rational designs for increasing the thermal performance of enzymes.

摘要

在许多研究中,具有低温高活性和良好热稳定性的酶受到了广泛关注。然而,提高酶的低温活性和热稳定性仍然具有挑战性。在这项研究中,基于增加盐桥数量,通过比较低温活性的内切菊粉酶 InuAGN25 和嗜热外切菊粉酶,设计了包括八个突变位点(N61E、K156R、P236E、T243K、D268E、T277D、Q390K 和 R409D)的突变体 Mut8S。Mut8S 在大肠杆菌中表达,然后用人类鼻病毒 3C 蛋白酶消化,以去除 N 端的氨基酸融合序列,得到 RfsMut8S。与野生型 RfsMInuAGN25 相比,突变体 RfsMut8S 表现出:(1)较低的均方根偏差值;(2)N 端和 C 端六个区域残基的均方根波动(RMSF)值较低,但催化口袋五个区域的 RMSF 值较高;(3)0-40°C 下的活性较高;(4)50°C 时的热稳定性更好。本研究提出了一种在增加末端刚性和催化结构域灵活性的基础上,提高外切菊粉酶低温活性和热稳定性的方法。这些发现可能有助于制定提高酶热性能的合理设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33e3/8291790/ba2fb4a9a72c/KBIE_A_1837476_UF0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验