Pucci Fabrizio, Rooman Marianne
Department of BioModeling, BioInformatics and BioProcesses, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, CP 263, Triumph Bld, 1050 Brussels, Belgium.
Department of BioModeling, BioInformatics and BioProcesses, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, CP 263, Triumph Bld, 1050 Brussels, Belgium.
Curr Opin Struct Biol. 2017 Feb;42:117-128. doi: 10.1016/j.sbi.2016.12.007. Epub 2016 Dec 29.
The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design.
热稳定性和冷稳定性及其适应性的分子基础,能使蛋白质在其宿主生物生存和生长的温度范围内保持折叠状态并发挥功能,目前仍只是部分得到阐明。实际上,实验研究和计算研究都未能得出一个完全精确且全面的物理图景,主要是因为所有效应都依赖于具体环境,因而极难理清。我们展示了关于这个高度复杂且具有挑战性问题的当前知识状态的简要概况,解决该问题将有助于进行大规模的理性蛋白质设计。