Suppr超能文献

一种用于三维肿瘤生长的多相模型。

A multiphase model for three-dimensional tumor growth.

作者信息

Sciumè G, Shelton S, Gray Wg, Miller Ct, Hussain F, Ferrari M, Decuzzi P, Schrefler Ba

机构信息

Department of Civil, Environmental and Architectural Engineering, University of Padua, Italy ; Laboratoire de Mécanique et Technologie, Ecole Normale Supérieure de Cachan, France.

Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, USA.

出版信息

New J Phys. 2013 Jan;15:015005. doi: 10.1088/1367-2630/15/1/015005.

Abstract

Several mathematical formulations have analyzed the time-dependent behaviour of a tumor mass. However, most of these propose simplifications that compromise the physical soundness of the model. Here, multiphase porous media mechanics is extended to model tumor evolution, using governing equations obtained via the Thermodynamically Constrained Averaging Theory (TCAT). A tumor mass is treated as a multiphase medium composed of an extracellular matrix (ECM); tumor cells (TC), which may become necrotic depending on the nutrient concentration and tumor phase pressure; healthy cells (HC); and an interstitial fluid (IF) for the transport of nutrients. The equations are solved by a Finite Element method to predict the growth rate of the tumor mass as a function of the initial tumor-to-healthy cell density ratio, nutrient concentration, mechanical strain, cell adhesion and geometry. Results are shown for three cases of practical biological interest such as multicellular tumor spheroids (MTS) and tumor cords. First, the model is validated by experimental data for time-dependent growth of an MTS in a culture medium. The tumor growth pattern follows a biphasic behaviour: initially, the rapidly growing tumor cells tend to saturate the volume available without any significant increase in overall tumor size; then, a classical Gompertzian pattern is observed for the MTS radius variation with time. A core with necrotic cells appears for tumor sizes larger than 150 μm, surrounded by a shell of viable tumor cells whose thickness stays almost constant with time. A formula to estimate the size of the necrotic core is proposed. In the second case, the MTS is confined within a healthy tissue. The growth rate is reduced, as compared to the first case - mostly due to the relative adhesion of the tumor and healthy cells to the ECM, and the less favourable transport of nutrients. In particular, for tumor cells adhering less avidly to the ECM, the healthy tissue is progressively displaced as the malignant mass grows, whereas tumor cell infiltration is predicted for the opposite condition. Interestingly, the infiltration potential of the tumor mass is mostly driven by the relative cell adhesion to the ECM. In the third case, a tumor cord model is analyzed where the malignant cells grow around microvessels in a 3D geometry. It is shown that tumor cells tend to migrate among adjacent vessels seeking new oxygen and nutrient. This model can predict and optimize the efficacy of anticancer therapeutic strategies. It can be further developed to answer questions on tumor biophysics, related to the effects of ECM stiffness and cell adhesion on tumor cell proliferation.

摘要

已有多种数学公式对肿瘤块的时间依赖性行为进行了分析。然而,其中大多数都提出了一些简化方法,这些方法损害了模型的物理合理性。在此,将多相多孔介质力学扩展用于对肿瘤演变进行建模,使用通过热力学约束平均理论(TCAT)获得的控制方程。肿瘤块被视为一种由细胞外基质(ECM)组成的多相介质;肿瘤细胞(TC),其可能根据营养物浓度和肿瘤相压力而坏死;健康细胞(HC);以及用于营养物运输的间质液(IF)。通过有限元方法求解这些方程,以预测肿瘤块的生长速率作为初始肿瘤与健康细胞密度比、营养物浓度、机械应变、细胞黏附及几何形状的函数。给出了三种具有实际生物学意义的情况的结果,如多细胞肿瘤球体(MTS)和肿瘤索。首先,通过关于MTS在培养基中随时间生长的实验数据对模型进行验证。肿瘤生长模式呈现双相行为:最初,快速生长的肿瘤细胞倾向于填满可用体积,而总体肿瘤大小没有任何显著增加;然后,观察到MTS半径随时间变化呈现经典的戈姆珀茨模式。对于大于150μm的肿瘤大小,出现了一个含有坏死细胞的核心,周围是一层存活肿瘤细胞,其厚度随时间几乎保持恒定。提出了一个估计坏死核心大小的公式。在第二种情况中,MTS被限制在健康组织内。与第一种情况相比,生长速率降低了——主要是由于肿瘤细胞和健康细胞与ECM的相对黏附,以及营养物运输较不利。特别是,对于与ECM黏附性较弱的肿瘤细胞,随着恶性肿块生长,健康组织会逐渐被取代,而对于相反情况则预测会出现肿瘤细胞浸润。有趣的是,肿瘤块的浸润潜力主要由细胞与ECM的相对黏附驱动。在第三种情况中,分析了一个肿瘤索模型,其中恶性细胞在三维几何结构中围绕微血管生长。结果表明,肿瘤细胞倾向于在相邻血管之间迁移以寻找新的氧气和营养物。该模型可以预测和优化抗癌治疗策略的疗效。它可以进一步发展以回答关于肿瘤生物物理学的问题,这些问题与ECM硬度和细胞黏附对肿瘤细胞增殖的影响有关。

相似文献

1
A multiphase model for three-dimensional tumor growth.
New J Phys. 2013 Jan;15:015005. doi: 10.1088/1367-2630/15/1/015005.
3
A two-phase model of plantar tissue: a step toward prediction of diabetic foot ulceration.
Int J Numer Method Biomed Eng. 2014 Nov;30(11):1153-69. doi: 10.1002/cnm.2650. Epub 2014 May 19.
4
A tumor growth model with deformable ECM.
Phys Biol. 2014 Nov 26;11(6):065004. doi: 10.1088/1478-3975/11/6/065004.
5
Modelling non-homogeneous stochastic reaction-diffusion systems: the case study of gemcitabine-treated non-small cell lung cancer growth.
BMC Bioinformatics. 2012;13 Suppl 14(Suppl 14):S14. doi: 10.1186/1471-2105-13-S14-S14. Epub 2012 Sep 7.
6
Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model.
Biomech Model Mechanobiol. 2016 Oct;15(5):1215-28. doi: 10.1007/s10237-015-0755-0. Epub 2016 Jan 8.
8
A monolithic multiphase porous medium framework for (a-)vascular tumor growth.
Comput Methods Appl Mech Eng. 2018 Oct 1;340:657-683. doi: 10.1016/j.cma.2018.06.009. Epub 2018 Jun 22.
10
Multiphase modelling of vascular tumour growth in two spatial dimensions.
J Theor Biol. 2013 Jan 7;316:70-89. doi: 10.1016/j.jtbi.2012.09.031. Epub 2012 Sep 29.

引用本文的文献

2
Rapid Biofabrication of an Advanced Microphysiological System Mimicking Phenotypical Heterogeneity and Drug Resistance in Glioblastoma.
Adv Healthc Mater. 2024 Dec;13(30):e2401876. doi: 10.1002/adhm.202401876. Epub 2024 Aug 5.
3
An in silico model of the capturing of magnetic nanoparticles in tumour spheroids in the presence of flow.
Biomed Microdevices. 2023 Nov 27;26(1):1. doi: 10.1007/s10544-023-00685-9.
4
Preclinical models for development of immune-oncology therapies.
Immuno-oncol Insights. 2022;3(8):379-398. doi: 10.18609/ioi.2022.41. Epub 2022 Sep 26.
5
Generalized Newtonian fluid flow in porous media.
Phys Rev Fluids. 2021 Dec;6(12). doi: 10.1103/physrevfluids.6.123302. Epub 2021 Dec 6.
6
Bio-Mechanical Model of Osteosarcoma Tumor Microenvironment: A Porous Media Approach.
Cancers (Basel). 2022 Dec 13;14(24):6143. doi: 10.3390/cancers14246143.
7
A continuum mechanical framework for modeling tumor growth and treatment in two- and three-phase systems.
Arch Appl Mech. 2022 Feb;92(2):461-489. doi: 10.1007/s00419-021-01891-8. Epub 2021 Jun 9.
8
A PDE Model of Breast Tumor Progression in MMTV-PyMT Mice.
J Pers Med. 2022 May 17;12(5):807. doi: 10.3390/jpm12050807.
10
Digital twinning of Cellular Capsule Technology: Emerging outcomes from the perspective of porous media mechanics.
PLoS One. 2021 Jul 12;16(7):e0254512. doi: 10.1371/journal.pone.0254512. eCollection 2021.

本文引用的文献

1
Numerical simulation of a thermodynamically consistent four-species tumor growth model.
Int J Numer Method Biomed Eng. 2012 Jan;28(1):3-24. doi: 10.1002/cnm.1467.
2
Averaging Theory for Description of Environmental Problems: What Have We Learned?
Adv Water Resour. 2013 Jan 1;51:123-138. doi: 10.1016/j.advwatres.2011.12.005.
3
How linear tension converts to curvature: geometric control of bone tissue growth.
PLoS One. 2012;7(5):e36336. doi: 10.1371/journal.pone.0036336. Epub 2012 May 11.
5
Cancer research. Unraveling the obesity-cancer connection.
Science. 2012 Jan 6;335(6064):28, 30-2. doi: 10.1126/science.335.6064.28.
6
Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions.
PLoS One. 2011 Apr 13;6(4):e14790. doi: 10.1371/journal.pone.0014790.
7
Multiscale cancer modeling.
Annu Rev Biomed Eng. 2011 Aug 15;13:127-55. doi: 10.1146/annurev-bioeng-071910-124729.
8
Emergent properties of tumor microenvironment in a real-life model of multicell tumor spheroids.
PLoS One. 2010 Nov 30;5(11):e13942. doi: 10.1371/journal.pone.0013942.
9
Delivering nanomedicine to solid tumors.
Nat Rev Clin Oncol. 2010 Nov;7(11):653-64. doi: 10.1038/nrclinonc.2010.139. Epub 2010 Sep 14.
10
Nonlinear modelling of cancer: bridging the gap between cells and tumours.
Nonlinearity. 2010;23(1):R1-R9. doi: 10.1088/0951-7715/23/1/r01.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验