Suppr超能文献

预测视觉和视听习得性等效学习过程中的刺激模态和工作记忆负荷

Predicting Stimulus Modality and Working Memory Load During Visual- and Audiovisual-Acquired Equivalence Learning.

作者信息

Puszta András, Pertich Ákos, Giricz Zsófia, Nyujtó Diána, Bodosi Balázs, Eördegh Gabriella, Nagy Attila

机构信息

Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway.

Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway.

出版信息

Front Hum Neurosci. 2020 Oct 8;14:569142. doi: 10.3389/fnhum.2020.569142. eCollection 2020.

Abstract

Scholars have extensively studied the electroencephalography (EEG) correlates of associative working memory (WM) load. However, the effect of stimulus modality on EEG patterns within this process is less understood. To fill this research gap, the present study re-analyzed EEG datasets recorded during visual and audiovisual equivalence learning tasks from earlier studies. The number of associations required to be maintained (WM load) in WM was increased using the staircase method during the acquisition phase of the tasks. The support vector machine algorithm was employed to predict WM load and stimulus modality using the power, phase connectivity, and cross-frequency coupling (CFC) values obtained during time segments with different WM loads in the visual and audiovisual tasks. A high accuracy (>90%) in predicting stimulus modality based on power spectral density and from the theta-beta CFC was observed. However, accuracy in predicting WM load was higher (≥75% accuracy) than that in predicting stimulus modality (which was at chance level) using theta and alpha phase connectivity. Under low WM load conditions, this connectivity was highest between the frontal and parieto-occipital channels. The results validated our findings from earlier studies that dissociated stimulus modality based on power-spectra and CFC during equivalence learning. Furthermore, the results emphasized the importance of alpha and theta frontoparietal connectivity in WM load.

摘要

学者们已经广泛研究了关联工作记忆(WM)负荷的脑电图(EEG)相关性。然而,在此过程中刺激模态对EEG模式的影响却鲜为人知。为了填补这一研究空白,本研究重新分析了早期研究中在视觉和视听等效学习任务期间记录的EEG数据集。在任务的获取阶段,使用阶梯法增加了WM中需要维持的关联数量(WM负荷)。支持向量机算法被用于利用在视觉和视听任务中不同WM负荷时间段获得的功率、相位连通性和交叉频率耦合(CFC)值来预测WM负荷和刺激模态。基于功率谱密度和theta-beta CFC观察到在预测刺激模态方面具有较高的准确率(>90%)。然而,使用theta和alpha相位连通性预测WM负荷的准确率(≥75%准确率)高于预测刺激模态的准确率(处于随机水平)。在低WM负荷条件下,这种连通性在额叶和顶枕叶通道之间最高。结果验证了我们早期研究的发现,即在等效学习期间基于功率谱和CFC区分刺激模态。此外,结果强调了alpha和theta额顶叶连通性在WM负荷中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/852c/7578848/f545d9bdaa20/fnhum-14-569142-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验