Luong Minh Anh, Robin Eric, Pauc Nicolas, Gentile Pascal, Baron Thierry, Salem Bassem, Sistani Masiar, Lugstein Alois, Spies Maria, Fernandez Bruno, den Hertog Martien
CEA-Grenoble, IRIG-DEPHY-MEM-LEMMA, Université Grenoble Alpes, F-38054 Grenoble, France.
CEA-Grenoble, IRIG-DEPHY-PHELIQS-SINAPS, Université Grenoble Alpes, F-38000 Grenoble, France.
ACS Appl Nano Mater. 2020 Oct 23;3(10):10427-10436. doi: 10.1021/acsanm.0c02303. Epub 2020 Sep 29.
While reversibility is a fundamental concept in thermodynamics, most reactions are not readily reversible, especially in solid-state physics. For example, thermal diffusion is a widely known concept, used among others to inject dopants into the substitutional positions in the matrix and improve device properties. Typically, such a diffusion process will create a concentration gradient extending over increasingly large regions, without possibility to reverse this effect. On the other hand, while the bottom-up growth of semiconducting nanowires is interesting, it can still be difficult to fabricate axial heterostructures with high control. In this paper, we report a thermally assisted partially reversible thermal diffusion process occurring in the solid-state reaction between an Al metal pad and a Si Ge alloy nanowire observed by in situ transmission electron microscopy. The thermally assisted reaction results in the creation of a Si-rich region sandwiched between the reacted Al and unreacted Si Ge part, forming an axial Al/Si/Si Ge heterostructure. Upon heating or (slow) cooling, the Al metal can repeatably move in and out of the Si Ge alloy nanowire while maintaining the rodlike geometry and crystallinity, allowing to fabricate and contact nanowire heterostructures in a reversible way in a single process step, compatible with current Si-based technology. This interesting system is promising for various applications, such as phase change memories in an all crystalline system with integrated contacts as well as Si/Si Ge /Si heterostructures for near-infrared sensing applications.
虽然可逆性是热力学中的一个基本概念,但大多数反应并非易于逆转,尤其是在固态物理学中。例如,热扩散是一个广为人知的概念,尤其用于将掺杂剂注入基体中的替代位置并改善器件性能。通常,这样的扩散过程会产生一个延伸到越来越大区域的浓度梯度,无法逆转这种效应。另一方面,虽然半导体纳米线的自下而上生长很有趣,但仍然难以高度可控地制造轴向异质结构。在本文中,我们报告了通过原位透射电子显微镜观察到的在Al金属垫与SiGe合金纳米线之间的固态反应中发生的热辅助部分可逆热扩散过程。热辅助反应导致在反应的Al和未反应的SiGe部分之间形成一个富Si区域,形成轴向Al/Si/SiGe异质结构。在加热或(缓慢)冷却时,Al金属可以反复进出SiGe合金纳米线,同时保持棒状几何形状和结晶度,从而允许在单个工艺步骤中以可逆方式制造和接触纳米线异质结构,并与当前的Si基技术兼容。这个有趣的系统在各种应用中很有前景,例如具有集成触点的全晶体系统中的相变存储器以及用于近红外传感应用的Si/SiGe/Si异质结构。