文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微小 RNA 介导的血管细胞间通讯在慢性肾脏病中发生改变。

MicroRNA-mediated vascular intercellular communication is altered in chronic kidney disease.

机构信息

Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.

Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.

出版信息

Cardiovasc Res. 2022 Jan 7;118(1):316-333. doi: 10.1093/cvr/cvaa322.


DOI:10.1093/cvr/cvaa322
PMID:33135066
Abstract

AIMS: Chronic kidney disease (CKD) is an independent risk factor for the development of coronary artery disease (CAD). For both, CKD and CAD, the intercellular transfer of microRNAs (miRs) through extracellular vesicles (EVs) is an important factor of disease development. Whether the combination of CAD and CKD affects endothelial function through cellular crosstalk of EV-incorporated miRs is still unknown. METHODS AND RESULTS: Out of 172 screened CAD patients, 31 patients with CAD + CKD were identified and matched with 31 CAD patients without CKD. Additionally, 13 controls without CAD and CKD were included. Large EVs from CAD + CKD patients contained significantly lower levels of the vasculo-protective miR-130a-3p and miR-126-3p compared to CAD patients and controls. Flow cytometric analysis of plasma-derived EVs revealed significantly higher numbers of endothelial cell-derived EVs in CAD and CAD + CKD patients compared to controls. EVs from CAD + CKD patients impaired target human coronary artery endothelial cell (HCAEC) proliferation upon incubation in vitro. Consistent with the clinical data, treatment with the uraemia toxin indoxyl sulfate (IS)-reduced miR-130a-3p levels in HCAEC-derived EVs. EVs from IS-treated donor HCAECs-reduced proliferation and re-endothelialization in EV-recipient cells and induced an anti-angiogenic gene expression profile. In a mouse-experiment, intravenous treatment with EVs from IS-treated endothelial cells significantly impaired endothelial regeneration. On the molecular level, we found that IS leads to an up-regulation of the heterogenous nuclear ribonucleoprotein U (hnRNPU), which retains miR-130a-3p in the cell leading to reduced vesicular miR-130a-3p export and impaired EV-recipient cell proliferation. CONCLUSION: Our findings suggest that EV-miR-mediated vascular intercellular communication is altered in patients with CAD and CKD, promoting CKD-induced endothelial dysfunction.

摘要

目的:慢性肾脏病(CKD)是冠状动脉疾病(CAD)发展的独立危险因素。对于 CKD 和 CAD 而言,通过细胞外囊泡(EVs)进行 miRNA(miRs)的细胞间转移是疾病发展的一个重要因素。CAD 和 CKD 的联合是否通过 EV 包裹的 miR 引起细胞间通讯来影响内皮功能仍不清楚。

方法和结果:在 172 名筛选出的 CAD 患者中,发现 31 名 CAD+CKD 患者,并与 31 名无 CKD 的 CAD 患者相匹配。此外,还纳入了 13 名无 CAD 和 CKD 的对照者。与 CAD 患者和对照组相比,CAD+CKD 患者的大 EV 中血管保护 miR-130a-3p 和 miR-126-3p 的水平明显降低。对来自 CAD+CKD 患者的血浆衍生 EV 的流式细胞术分析显示,与对照组相比,CAD 和 CAD+CKD 患者中内皮细胞衍生 EV 的数量明显增加。在体外孵育时,来自 CAD+CKD 患者的 EV 会损害靶人冠状动脉内皮细胞(HCAEC)的增殖。与临床数据一致,用尿毒症毒素吲哚硫酸酯(IS)处理可降低 HCAEC 衍生 EV 中的 miR-130a-3p 水平。来自 IS 处理供体 HCAEC 的 EV 降低了 EV 受体细胞中的增殖和再内皮化,并诱导了抗血管生成基因表达谱。在一项小鼠实验中,静脉内给予 IS 处理的内皮细胞衍生的 EV 会显著损害内皮细胞再生。在分子水平上,我们发现 IS 导致异质核核糖核蛋白 U(hnRNPU)上调,这会导致 miR-130a-3p 在细胞内保留,从而导致囊泡 miR-130a-3p 输出减少和 EV 受体细胞增殖受损。

结论:我们的研究结果表明,CAD 和 CKD 患者的 EV-miR 介导的血管细胞间通讯发生改变,促进了 CKD 引起的内皮功能障碍。

相似文献

[1]
MicroRNA-mediated vascular intercellular communication is altered in chronic kidney disease.

Cardiovasc Res. 2022-1-7

[2]
Regulation of capillary tubules and lipid formation in vascular endothelial cells and macrophages via extracellular vesicle-mediated microRNA-4306 transfer.

J Int Med Res. 2019-1

[3]
Atherosclerotic Conditions Promote the Packaging of Functional MicroRNA-92a-3p Into Endothelial Microvesicles.

Circ Res. 2019-2-15

[4]
Heterogeneous nuclear ribonucleoprotein U-actin complex derived from extracellular vesicles facilitates proliferation and migration of human coronary artery endothelial cells by promoting RNA polymerase II transcription.

Bioengineered. 2022-5

[5]
IL-3R-alpha blockade inhibits tumor endothelial cell-derived extracellular vesicle (EV)-mediated vessel formation by targeting the β-catenin pathway.

Oncogene. 2017-12-14

[6]
Platelet-derived extracellular vesicles encapsulate microRNA-34c-5p to ameliorate inflammatory response of coronary artery endothelial cells via PODXL-mediated P38 MAPK signaling pathway.

Nutr Metab Cardiovasc Dis. 2022-10

[7]
M1 macrophages-derived extracellular vesicles elevate microRNA-185-3p to aggravate the development of atherosclerosis in ApoE mice by inhibiting small mothers against decapentaplegic 7.

Int Immunopharmacol. 2021-1

[8]
Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles.

Circulation. 2013-9-6

[9]
Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease.

J Mol Cell Cardiol. 2017-5

[10]
NEAT1/miR-140-3p/MAPK1 mediates the viability and survival of coronary endothelial cells and affects coronary atherosclerotic heart disease.

Acta Biochim Biophys Sin (Shanghai). 2020-9-8

引用本文的文献

[1]
Pathogenesis of Cardiac Valvular Hemangiomas: A Case Report and Literature Review.

Int J Mol Sci. 2025-7-23

[2]
Red blood cell-derived microparticles induce kidney injury by triggering endothelial cell ferroptosis in intravascular hemolysis.

Redox Biol. 2025-7-15

[3]
Study on the relationship between in-stent neoatherosclerosis and chronic kidney disease: an optical coherence tomography study.

Sci Rep. 2025-7-1

[4]
Platelets and inflammation-insights from platelet non-coding RNA content and release in the Bruneck study and the PACMAN-AMI trial.

Cardiovasc Res. 2025-8-14

[5]
Circulating Extracellular Vesicles as Putative Mediators of Cardiovascular Disease in Paediatric Chronic Kidney Disease.

J Extracell Vesicles. 2025-3

[6]
Engineered Extracellular Vesicles in Chronic Kidney Diseases: A Comprehensive Review.

Int J Nanomedicine. 2024-3-7

[7]
Quantifying carotid stiffness in chronic kidney disease using ultrafast ultrasound imaging.

Quant Imaging Med Surg. 2024-1-3

[8]
Extracellular vesicles in atherosclerosis and vascular calcification: the versatile non-coding RNAs from endothelial cells and vascular smooth muscle cells.

Front Med (Lausanne). 2023-7-4

[9]
Circulating non-coding RNAs in chronic kidney disease and its complications.

Nat Rev Nephrol. 2023-9

[10]
A small circulating miRNAs signature predicts mortality and adverse cardiovascular outcomes in chronic hemodialysis patients.

Clin Kidney J. 2023-1-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索