Suppr超能文献

通用的自动化特征提取和选择方法及其在站立和步态期间脊柱姿势的性别分类和生物力学性别差异知识发现中的应用。

General method for automated feature extraction and selection and its application for gender classification and biomechanical knowledge discovery of sex differences in spinal posture during stance and gait.

机构信息

Department of Sports Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany.

Institute of Physical Therapy, Prevention and Rehabilitation, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.

出版信息

Comput Methods Biomech Biomed Engin. 2021 Feb;24(3):299-307. doi: 10.1080/10255842.2020.1828375. Epub 2020 Nov 2.

Abstract

Modern technologies enable to capture multiple biomechanical parameters often resulting in relational data. The current work proposes a generally applicable method comprising automated feature extraction, ensemble feature selection and classification to best capture the potentials of the data also for generating new biomechanical knowledge. Its benefits are demonstrated in the concrete biomechanically and medically relevant use case of gender classification based on spinal data for stance and gait. Very good results for accuracy were obtained using gait data. Dynamic movements of the lumbar spine in sagittal and frontal plane and of the pelvis in frontal plane best map gender differences.

摘要

现代技术能够捕捉到多个生物力学参数,这些参数通常会产生相关数据。本研究提出了一种普遍适用的方法,包括自动化特征提取、集成特征选择和分类,以充分利用数据的潜力,同时生成新的生物力学知识。该方法在具体的生物力学和医学相关应用案例中得到了验证,即基于脊柱数据对站立和行走姿势进行性别分类。使用步态数据可获得非常高的准确性结果。在矢状面和额状面的腰椎运动以及在额状面的骨盆运动能够很好地反映性别差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验