Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Chem Soc Rev. 2020 Dec 21;49(24):9028-9056. doi: 10.1039/d0cs00930j. Epub 2020 Nov 2.
Facile activation and conversion of small molecules (e.g., HO, CO, N, CH, and CH) into solar fuels or value-added chemicals under mild conditions is an attractive pathway in dealing with the worldwide appeal of energy consumption and the growing demand of industrial feedstocks. Compared with conventional thermo- or electro-catalytic approaches, the protocol of photocatalysis shines light on green and low-cost storage of sunlight in chemical bonds. For instance, artificial photosynthesis is an effective way to split HO into molecular O and H, thereby storing solar energy in the form of hydrogen fuel. Because of rational tunability in band gaps, charge-carrier dynamics, exposed active sites and catalytic redox activities by tailoring size, composition, morphology, surface, and/or interface property, semiconductor nanocrystals (NCs) emerge as very promising candidates for photo-induced small molecule activation, including HO splitting, CO reduction, N fixation, CH conversion and chemical bond formation (e.g., S-S, C-C, C-N, C-P, C-O). In this review, we summarize the recent advances in small molecule activation via artificial photosynthesis using semiconductor NCs, especially those consisting of II-VI and III-V elements. Moreover, we highlight the intrinsic advantages of semiconductor NCs in this field and look into the fabrication of prototype devices for large-scale and sustainable small molecule activation to store solar energy in chemical bonds.
在温和条件下,将小分子(例如 HO、CO、N、CH 和 CH)轻易地转化为太阳能燃料或增值化学品,是应对全球能源消耗需求和工业原料需求不断增长的吸引力途径。与传统的热或电催化方法相比,光催化方案为绿色和低成本的化学键太阳能存储提供了可能性。例如,人工光合作用是将 HO 分解为分子 O 和 H 的有效方法,从而以氢气燃料的形式储存太阳能。由于通过调整尺寸、组成、形态、表面和/或界面特性来合理调节带隙、载流子动力学、暴露的活性位点和催化氧化还原活性,半导体纳米晶体(NCs)成为光诱导小分子激活的非常有前途的候选材料,包括 HO 分解、CO 还原、N 固定、CH 转化和化学键形成(例如 S-S、C-C、C-N、C-P、C-O)。在这篇综述中,我们总结了使用半导体 NCs 通过人工光合作用进行小分子激活的最新进展,特别是那些由 II-VI 和 III-V 元素组成的 NCs。此外,我们强调了半导体 NCs 在该领域的内在优势,并探讨了用于大规模和可持续小分子激活以将太阳能存储在化学键中的原型设备的制造。