Suppr超能文献

CopyDetective:全外显子测序数据中检测阈值感知拷贝数变异调用。

CopyDetective: Detection threshold-aware copy number variant calling in whole-exome sequencing data.

机构信息

Institute of Medical Informatics, University of Münster, Albert-Schweitzer-Campus 1, Building A11, Münster 48149, Germany.

Laboratory Hematology, RadboudUMC, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, Netherlands.

出版信息

Gigascience. 2020 Nov 2;9(11). doi: 10.1093/gigascience/giaa118.

Abstract

BACKGROUND

Copy number variants (CNVs) are known to play an important role in the development and progression of several diseases. However, detection of CNVs with whole-exome sequencing (WES) experiments is challenging. Usually, additional experiments have to be performed.

FINDINGS

We developed a novel algorithm for somatic CNV calling in matched WES data called "CopyDetective". Different from other approaches, CNV calling with CopyDetective consists of a 2-step procedure: first, quality analysis is performed, determining individual detection thresholds for every sample. Second, actual CNV calling on the basis of the previously determined thresholds is performed. Our algorithm evaluates the change in variant allele frequency of polymorphisms and reports the fraction of affected cells for every CNV. Analyzing 4 WES data sets (n = 100) we observed superior performance of CopyDetective compared with ExomeCNV, VarScan2, ControlFREEC, ExomeDepth, and CNV-seq.

CONCLUSIONS

Individual detection thresholds reveal that not every WES data set is equally apt for CNV calling. Initial quality analyses, determining individual detection thresholds-as realized by CopyDetective-can and should be performed prior to actual variant calling.

摘要

背景

拷贝数变异(CNVs)已知在多种疾病的发生和发展中发挥着重要作用。然而,使用全外显子组测序(WES)实验检测 CNVs 具有挑战性。通常,必须进行额外的实验。

发现

我们开发了一种称为“CopyDetective”的新型算法,用于匹配的 WES 数据中的体细胞 CNV 调用。与其他方法不同,使用 CopyDetective 进行 CNV 调用包括两步过程:首先,进行质量分析,为每个样本确定个体检测阈值。其次,根据先前确定的阈值进行实际的 CNV 调用。我们的算法评估了多态性的变异等位基因频率的变化,并为每个 CNV 报告受影响细胞的分数。在分析了 4 个 WES 数据集(n=100)后,我们观察到 CopyDetective 与 ExomeCNV、VarScan2、ControlFREEC、ExomeDepth 和 CNV-seq 相比具有更好的性能。

结论

个体检测阈值表明并非每个 WES 数据集都同样适合 CNV 调用。初始质量分析,确定个体检测阈值——如 CopyDetective 所实现的——可以而且应该在实际的变体调用之前进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e63/7604644/3c117ea5deb1/giaa118fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验