Suppr超能文献

生物必需元素的进化历史可以指导我们在宇宙中寻找生命。

Evolutionary History of Bioessential Elements Can Guide the Search for Life in the Universe.

机构信息

Department of Molecular and Cellular Biology, University of Arizona, 1007 E Lowell St, Tucson, AZ, 85721, USA.

Department of Astronomy and Steward Observatory, University of Arizona, 933 N Cherry Ave, Tucson, AZ, 85719, USA.

出版信息

Chembiochem. 2021 Jan 5;22(1):114-119. doi: 10.1002/cbic.202000500. Epub 2020 Nov 2.

Abstract

Our understanding of life in the universe comes from one sample, life on Earth. Current and next-generation space missions will target exoplanets as well as planets and moons in our own solar system with the primary goal of detecting, interpreting and characterizing indications of possible biological activity. Thus, understanding life's fundamental characteristics is increasingly critical for detecting and interpreting potential biological signatures elsewhere in the universe. Astrobiologists have outlined the essential roles of carbon and water for life, but we have yet to decipher the rules governing the evolution of how living organisms use bioessential elements. Does the suite of life's essential chemical elements on Earth constitute only one possible evolutionary outcome? Are some elements so essential for biological functions that evolution will select for them despite low availability? How would this play out on other worlds that have different relative element abundances? When we look for life in the universe, or the conditions that could give rise to life, we must learn how to recognize it in extremely different chemical and environmental conditions from those on Earth. We argue that by exposing self-organizing biotic chemistries to different combinations of abiotic materials, and by mapping the evolutionary history of metalloenzyme biochemistry onto geological availabilities of metals, alternative element choices that are very different from life's present-day molecular structure might result. A greater understanding of the paleomolecular evolutionary history of life on Earth will create a predictive capacity for detecting and assessing life's existence on worlds where alternate evolutionary paths might have been taken.

摘要

我们对宇宙生命的理解来自于一个样本,即地球上的生命。当前和下一代太空任务将以系外行星以及我们太阳系中的行星和卫星为目标,主要目标是检测、解释和描述可能存在的生物活动迹象。因此,了解生命的基本特征对于在宇宙其他地方检测和解释潜在的生物特征变得越来越重要。天体生物学家已经概述了碳和水对生命的基本作用,但我们还没有破译出生物利用生物必需元素的演变规律。地球上生命的基本化学元素组合是否只是一种可能的进化结果?是否有一些元素对生物功能如此重要,以至于即使它们的可利用性很低,进化也会选择它们?在其他元素丰度不同的行星上会如何发展?当我们在宇宙中寻找生命或可能产生生命的条件时,我们必须学会如何在与地球截然不同的化学和环境条件下识别它。我们认为,通过将自我组织的生物化学物质暴露于不同的非生物物质组合中,并将金属酶生物化学的进化历史映射到金属的地质可利用性上,可能会产生与生命目前的分子结构非常不同的替代元素选择。更深入地了解地球上生命的古分子进化历史将为检测和评估在可能采取替代进化路径的世界上生命的存在创造一种预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验