Frolov Alexander S, Sánchez-Barriga Jaime, Callaert Carolien, Hadermann Joke, Fedorov Alexander V, Usachov Dmitry Yu, Chaika Alexander N, Walls Brian C, Zhussupbekov Kuanysh, Shvets Igor V, Muntwiler Matthias, Amati Matteo, Gregoratti Luca, Varykhalov Andrei Yu, Rader Oliver, Yashina Lada V
Department of Chemistry, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
Semenov Federal Research Center for Chemical Physics, Kosygina Street 4, 119991 Moscow, Russia.
ACS Nano. 2020 Dec 22;14(12):16576-16589. doi: 10.1021/acsnano.0c05851. Epub 2020 Nov 2.
Renewed interest in the ferroelectric semiconductor germanium telluride was recently triggered by the direct observation of a giant Rashba effect and a 30-year-old dream about a functional spin field-effect transistor. In this respect, all-electrical control of the spin texture in this material in combination with ferroelectric properties at the nanoscale would create advanced functionalities in spintronics and data information processing. Here, we investigate the atomic and electronic properties of GeTe bulk single crystals and their (111) surfaces. We succeeded in growing crystals possessing solely inversion domains of ∼10 nm thickness parallel to each other. Using HAADF-TEM we observe two types of domain boundaries, one of them being similar in structure to the van der Waals gap in layered materials. This structure is responsible for the formation of surface domains with preferential Te-termination (∼68%) as we determined using photoelectron diffraction and XPS. The lateral dimensions of the surface domains are in the range of ∼10-100 nm, and both Ge- and Te-terminations reveal no reconstruction. Using spin-ARPES we establish an intrinsic quantitative relationship between the spin polarization of pure bulk states and the relative contribution of different terminations, a result that is consistent with a reversal of the spin texture of the bulk Rashba bands for opposite configurations of the ferroelectric polarization within individual nanodomains. Our findings are important for potential applications of ferroelectric Rashba semiconductors in nonvolatile spintronic devices with advanced memory and computing capabilities at the nanoscale.
对铁电半导体碲化锗的新兴趣最近因对巨大 Rashba 效应的直接观测以及一个关于功能性自旋场效应晶体管的 30 年梦想而被激发。在这方面,在纳米尺度上结合铁电特性对这种材料中的自旋纹理进行全电控制将在自旋电子学和数据信息处理中创造先进功能。在此,我们研究了碲化锗块状单晶及其(111)表面的原子和电子性质。我们成功生长出了仅具有彼此平行的厚度约为 10 纳米的反演畴的晶体。使用高角度环形暗场透射电子显微镜(HAADF-TEM),我们观察到两种类型的畴界,其中一种在结构上类似于层状材料中的范德华间隙。正如我们使用光电子衍射和 X 射线光电子能谱(XPS)所确定的那样,这种结构导致了优先以碲终止(约 68%)的表面畴的形成。表面畴的横向尺寸在约 10 - 100 纳米范围内,并且锗和碲终止面均未显示出重构。使用自旋角分辨光电子能谱(spin-ARPES),我们建立了纯体态的自旋极化与不同终止面的相对贡献之间的内在定量关系,这一结果与在单个纳米畴内铁电极化相反配置时体 Rashba 能带的自旋纹理反转相一致。我们的发现对于铁电 Rashba 半导体在具有纳米尺度先进存储和计算能力的非易失性自旋电子器件中的潜在应用具有重要意义。