Suppr超能文献

生殖细胞睾丸癌患者预后列线图的建立与验证。

Development and validation of prognostic nomogram for germ cell testicular cancer patients.

机构信息

Department of Urology, People’s Hospital of Putuo, Shanghai 200060, China.

Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China.

出版信息

Aging (Albany NY). 2020 Nov 2;12(21):22095-22111. doi: 10.18632/aging.104063.

Abstract

The purpose of our study was to establish a reliable and practical nomogram based on significant clinical factors to predict the overall survival (OS) and cancer-specific survival (CSS) of patients with germ cell testicular cancer (GCTC). Patients diagnosed with GCTC between 2004 and 2015 were obtained from the SEER database. Nomograms were constructed using the R software to predict the OS and CSS probabilities and the constructed nomograms were validated and calibrated. A total of 22,165 GCTC patients were enrolled in the study, including the training cohort (15,515 patients) and the validation cohort (6,650 patients). In the training cohort, multivariate Cox regression showed that age, race, AJCC stage, SEER stage and surgery were independent prognostic factors for OS, while age, race, AJCC stage, TM stage, SEER stage and radiotherapy were independent prognostic factors for CSS. Based on the above Cox regression results, we constructed prognostic nomograms of OS and CSS in GCTC patients and found that the OS nomograms had higher C-index and AUC compared to TNM stage in the training and validation cohorts. In addition, in the training and external validation cohorts, the calibration curves showed a good consistency between the predicted and actual 3-, 5- and 10-year OS and CSS rates of the nomogram. The current prognostic nomogram can provide a personalized risk assessment for the survival of GCTC patients.

摘要

我们的研究目的是基于重要的临床因素建立一个可靠且实用的列线图,以预测生殖细胞睾丸癌(GCTC)患者的总生存(OS)和癌症特异性生存(CSS)。从 SEER 数据库中获取了 2004 年至 2015 年间诊断为 GCTC 的患者。使用 R 软件构建列线图以预测 OS 和 CSS 概率,并验证和校准构建的列线图。共有 22,165 名 GCTC 患者纳入研究,包括训练队列(15,515 名患者)和验证队列(6,650 名患者)。在训练队列中,多变量 Cox 回归显示年龄、种族、AJCC 分期、SEER 分期和手术是 OS 的独立预后因素,而年龄、种族、AJCC 分期、TM 分期、SEER 分期和放疗是 CSS 的独立预后因素。基于上述 Cox 回归结果,我们构建了 GCTC 患者 OS 和 CSS 的预后列线图,发现 OS 列线图在训练和验证队列中的 C 指数和 AUC 均高于 TNM 分期。此外,在训练和外部验证队列中,校准曲线显示列线图预测的和实际的 3、5 和 10 年 OS 和 CSS 率之间具有良好的一致性。目前的预后列线图可为 GCTC 患者的生存提供个性化风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f66e/7695357/57b6d4f319b0/aging-12-104063-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验