Suppr超能文献

用于预测肾癌患者总生存期和癌症特异性生存期的预后列线图及Aggtrmmns评分系统。 需注意,原文中的“Aggtrmmns”可能有误,不太明确其准确含义。

Prognostic nomograms and Aggtrmmns scoring system for predicting overall survival and cancer-specific survival of patients with kidney cancer.

作者信息

Zhou Yuan, Zhang Rentao, Ding Yinman, Wang Zhengquan, Yang Cheng, Tao Sha, Liang Chaozhao

机构信息

Department of Urology Surgery, The People's Hospital of Xuancheng City, Xuancheng, China.

Department of Urology Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.

出版信息

Cancer Med. 2020 Apr;9(8):2710-2722. doi: 10.1002/cam4.2916. Epub 2020 Feb 22.

Abstract

BACKGROUND

Currently, the prognosis of kidney cancer depends mainly on the pathological grade or tumor stage. Clinicians have few effective tools that can personalize and adequately evaluate the prognosis of kidney cancer patients.

METHODS

A total of 70 481 kidney cancer patients were selected from the Surveillance, Epidemiology, and End Results database, among which patients diagnosed in 2005-2011 (n = 42 890) were used to establish nomograms for overall survival (OS) and cancer-specific survival (CSS), and those diagnosed in 2012-2015 (n = 24 591) were used for external validation. Univariate and multivariate Cox analyses were used to determine independent prognostic factors. Concordance index (C-index), receiver operating characteristic curve, and calibration curve were used to evaluate the predictive capacity of the nomograms. We further reduced subgroup classification and used propensity score matching to balance clinical informations, and analyzed the effect of other variables on survival. We established a new kidney cancer prognostic score system based on the effect of all available variables on survival. Cox proportional hazard model and Kaplan-Meier curves were used for survival comparison.

RESULTS

Age, gender, marital status, surgery, grade, T stage, and M stage were included as independent risk factors in the nomograms. The favorable area under the curve (AUC) value (for OS, AUC = 0.812-0.858; and for CSS, AUC = 0.890-0.921), internal (for OS, C-index = 0.776; and for CSS, C-index = 0.856), and external (for OS, C-index = 0.814-0.841; and for CSS, C-index = 0.894-0.904) validation indicated that the proposed nomograms could accurately predict 1-, 3-, and 5-year OS and CSS of kidney cancer patients. The Aggtrmmns prognostic scoring system based on age, gender, race, marital status, grade, TNM stage, and surgery of kidney cancer patients could stage patients more explicitly than the AJCC staging system.

CONCLUSION

The nomogram and Aggtrmmns scoring system can predict OS and CSS in kidney cancer patients effectively, which may help clinicians personalize prognostic assessments and clinical decisions.

摘要

背景

目前,肾癌的预后主要取决于病理分级或肿瘤分期。临床医生几乎没有有效的工具能够对肾癌患者的预后进行个性化且充分的评估。

方法

从监测、流行病学与最终结果数据库中选取了70481例肾癌患者,其中将2005 - 2011年诊断的患者(n = 42890)用于建立总生存(OS)和癌症特异性生存(CSS)的列线图,而2012 - 2015年诊断的患者(n = 24591)用于外部验证。采用单因素和多因素Cox分析来确定独立预后因素。一致性指数(C指数)、受试者工作特征曲线和校准曲线用于评估列线图的预测能力。我们进一步减少亚组分类并使用倾向评分匹配来平衡临床信息,并分析其他变量对生存的影响。基于所有可用变量对生存的影响,我们建立了一种新的肾癌预后评分系统。采用Cox比例风险模型和Kaplan - Meier曲线进行生存比较。

结果

年龄、性别、婚姻状况、手术、分级、T分期和M分期被纳入列线图中的独立危险因素。曲线下面积(AUC)的良好值(对于OS,AUC = 0.812 - 0.858;对于CSS,AUC = 0.890 - 0.921)、内部验证(对于OS,C指数 = 0.776;对于CSS,C指数 = 0.856)以及外部验证(对于OS,C指数 = 0.814 - 0.841;对于CSS,C指数 = 0.894 - 0.904)表明,所提出的列线图能够准确预测肾癌患者1年、3年和5年的OS和CSS。基于肾癌患者的年龄、性别、种族、婚姻状况、分级、TNM分期和手术的Aggtrmmns预后评分系统比美国癌症联合委员会(AJCC)分期系统能更明确地对患者进行分期。

结论

列线图和Aggtrmmns评分系统能够有效地预测肾癌患者的OS和CSS,这可能有助于临床医生进行个性化的预后评估和临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfc9/7163106/50f52435eca3/CAM4-9-2710-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验