Suppr超能文献

基于综合生物信息学分析鉴定脑胶质瘤差异表达基因及信号通路。

Identification of Differentially Expressed Genes and Signaling Pathways in Glioma by Integrated Bioinformatics Analysis.

机构信息

School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan.

Department of Radiology, Binzhou Medical University Affiliated Hospital, Binzhou, China.

出版信息

J Craniofac Surg. 2020 Nov/Dec;31(8):2360-2363. doi: 10.1097/SCS.0000000000006743.

Abstract

BACKGROUND

Gene alterations are very vital when it comes to the molecular pathogenesis of glioma. In this study, there was the design of the probable candidate genes in the glioma.

METHODS

Gene Expression Omnibus (GEO) database data sets of glioma tissue were retrieved and the differentially expressed genes (DEGs) from the individual microarray were merged. The following were performed: Gene Ontology; enrichment analysis; Kyoto Encyclopedia of Genes and Genomes (KEGG); pathway analysis; protein-protein interaction networks analysis.

RESULTS

The following were selected: 4 GEO data sets that included 370 high-grade glioma samples as well as 169 low-grade glioma samples. Identification of a total of 174 DEGs was done. Out of the identified DEGs, 82 were upregulated and 92 were downregulated genes. According to the Gene Ontology analysis, the primary biologic focus of DEGs included passive transmembrane transporter activity, regulation of channel activity, as well as the revelation that the biologic roles of DEGs aimed primarily on regulating channel activity, as well as the monovalent inorganic cation transmembrane transporter activity. The most significant pathway in KEGG analysis was PI3K-AKT signaling pathway. Some of the significant hub genes as per the protein-protein interaction network analysis included CDC20, NDC80, DLGAP5, CENPF, CENPE, ASPM, TPX2, TOP2A, RRM2, and PRC1.

CONCLUSION

From this study, it is evidenced that the use of integrated bioinformatics analyses in screening for pathways and DEGs in glioma can help us understand the clinical significance of understanding glioma, the molecular mechanism that underlies the development of glioma, as well as the provision of an effective target to treat glioma.

摘要

背景

基因改变在神经胶质瘤的分子发病机制中非常重要。在这项研究中,设计了神经胶质瘤的可能候选基因。

方法

从基因表达综合数据库(GEO)中检索神经胶质瘤组织的数据集,并合并来自单个微阵列的差异表达基因(DEGs)。进行了以下操作:基因本体论;富集分析;京都基因与基因组百科全书(KEGG);途径分析;蛋白质-蛋白质相互作用网络分析。

结果

选择了 4 个 GEO 数据集,其中包括 370 个高级别神经胶质瘤样本和 169 个低级别神经胶质瘤样本。总共鉴定出 174 个 DEGs。在鉴定出的 DEGs 中,有 82 个上调基因和 92 个下调基因。根据基因本体论分析,DEGs 的主要生物学焦点包括被动跨膜转运体活性、通道活性调节,以及 DEGs 的生物学作用主要针对调节通道活性以及单价无机阳离子跨膜转运体活性。KEGG 分析中最重要的途径是 PI3K-AKT 信号通路。根据蛋白质-蛋白质相互作用网络分析,一些重要的枢纽基因包括 CDC20、NDC80、DLGAP5、CENPF、CENPE、ASPM、TPX2、TOP2A、RRM2 和 PRC1。

结论

本研究表明,综合生物信息学分析在筛选神经胶质瘤通路和 DEGs 方面的应用有助于我们了解理解神经胶质瘤的临床意义、神经胶质瘤发生的分子机制以及提供有效的治疗神经胶质瘤的靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验