Suppr超能文献

通过现场人类指导教授机器人社会自主性。

Teaching robots social autonomy from in situ human guidance.

作者信息

Senft Emmanuel, Lemaignan Séverin, Baxter Paul E, Bartlett Madeleine, Belpaeme Tony

机构信息

Centre for Robotics and Neural Systems, University of Plymouth, Plymouth, UK.

Bristol Robotics Laboratory, University of the West of England, Bristol, UK.

出版信息

Sci Robot. 2019 Oct 23;4(35). doi: 10.1126/scirobotics.aat1186.

Abstract

Striking the right balance between robot autonomy and human control is a core challenge in social robotics, in both technical and ethical terms. On the one hand, extended robot autonomy offers the potential for increased human productivity and for the off-loading of physical and cognitive tasks. On the other hand, making the most of human technical and social expertise, as well as maintaining accountability, is highly desirable. This is particularly relevant in domains such as medical therapy and education, where social robots hold substantial promise, but where there is a high cost to poorly performing autonomous systems, compounded by ethical concerns. We present a field study in which we evaluate SPARC (supervised progressively autonomous robot competencies), an innovative approach addressing this challenge whereby a robot progressively learns appropriate autonomous behavior from in situ human demonstrations and guidance. Using online machine learning techniques, we demonstrate that the robot could effectively acquire legible and congruent social policies in a high-dimensional child-tutoring situation needing only a limited number of demonstrations while preserving human supervision whenever desirable. By exploiting human expertise, our technique enables rapid learning of autonomous social and domain-specific policies in complex and nondeterministic environments. Last, we underline the generic properties of SPARC and discuss how this paradigm is relevant to a broad range of difficult human-robot interaction scenarios.

摘要

在技术和伦理层面,在机器人自主性和人类控制之间找到恰当的平衡是社交机器人领域的一项核心挑战。一方面,扩展机器人自主性有可能提高人类生产力,并减轻体力和认知任务负担。另一方面,充分利用人类的技术和社会专业知识以及保持问责制是非常可取的。这在医疗治疗和教育等领域尤为重要,在这些领域中,社交机器人有着巨大潜力,但表现不佳的自主系统成本高昂,且存在伦理问题。我们进行了一项实地研究,评估了SPARC(监督渐进式自主机器人能力),这是一种应对这一挑战的创新方法,即机器人从现场人类演示和指导中逐步学习适当的自主行为。使用在线机器学习技术,我们证明,在需要有限数量演示的高维儿童辅导情境中,机器人能够有效地获取清晰且一致的社会政策,同时在需要时保留人类监督。通过利用人类专业知识,我们的技术能够在复杂且不确定的环境中快速学习自主社会政策和特定领域政策。最后,我们强调了SPARC的通用属性,并讨论了这种范式如何与广泛的困难人机交互场景相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验