卡塔尔的肥胖问题:一项关于相关风险因素识别的病例对照研究。

Obesity in Qatar: A Case-Control Study on the Identification of Associated Risk Factors.

作者信息

Khondaker Md Tawkat Islam, Khan Junaed Younus, Refaee Mahmoud Ahmed, Hajj Nady El, Rahman M Sohel, Alam Tanvir

机构信息

Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh.

College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar.

出版信息

Diagnostics (Basel). 2020 Oct 29;10(11):883. doi: 10.3390/diagnostics10110883.

Abstract

Obesity is an emerging public health problem in the Western world as well as in the Gulf region. Qatar, a tiny wealthy county, is among the top-ranked obese countries with a high obesity rate among its population. Compared to Qatar's severity of this health crisis, only a limited number of studies focused on the systematic identification of potential risk factors using multimodal datasets. This study aims to develop machine learning (ML) models to distinguish healthy from obese individuals and reveal potential risk factors associated with obesity in Qatar. We designed a case-control study focused on 500 Qatari subjects, comprising 250 obese and 250 healthy individuals- the later forming the control group. We obtained the most extensive collection of clinical measurements for the Qatari population from the Qatar Biobank (QBB) repertoire, including (i) Physio-clinical Biomarkers, (ii) Spirometry, (iii) VICORDER, (iv) DXA scan composition, and (v) DXA scan densitometry readings. We developed several machine learning (ML) models to distinguish healthy from obese individuals and applied multiple feature selection techniques to identify potential risk factors associated with obesity. The proposed ML model achieved over 90% accuracy, thereby outperforming the existing state of the art models. The outcome from the ablation study on multimodal clinical datasets revealed physio-clinical measurements as the most influential risk factors in distinguishing healthy versus obese subjects. Furthermore, multiple feature ranking techniques confirmed known obesity risk factors (c-peptide, insulin, albumin, uric acid) and identified potential risk factors linked to obesity-related comorbidities such as diabetes (e.g., HbA1c, glucose), liver function (e.g., alkaline phosphatase, gamma-glutamyl transferase), lipid profile (e.g., triglyceride, low density lipoprotein cholesterol, high density lipoprotein cholesterol), etc. Most of the DXA measurements (e.g., bone area, bone mineral composition, bone mineral density, etc.) were significantly (-value < 0.05) higher in the obese group. Overall, the net effect of hypothesized protective factors of obesity on bone mass seems to have surpassed the hypothesized harmful factors. All the identified factors warrant further investigation in a clinical setup to understand their role in obesity.

摘要

肥胖在西方世界以及海湾地区都是一个新兴的公共卫生问题。卡塔尔,一个富裕的小国,是肥胖率位居前列的国家之一,其人口肥胖率很高。与卡塔尔这一健康危机的严重程度相比,仅有有限的研究致力于使用多模态数据集系统地识别潜在风险因素。本研究旨在开发机器学习(ML)模型,以区分健康个体和肥胖个体,并揭示卡塔尔与肥胖相关的潜在风险因素。我们设计了一项病例对照研究,聚焦于500名卡塔尔受试者,其中包括250名肥胖个体和250名健康个体——后者构成对照组。我们从卡塔尔生物样本库(QBB)的全部资料中获取了卡塔尔人群最广泛的临床测量数据集合,包括:(i)生理临床生物标志物,(ii)肺活量测定,(iii)VICORDER,(iv)双能X线吸收法扫描成分测定,以及(v)双能X线吸收法扫描骨密度读数。我们开发了多个机器学习(ML)模型来区分健康个体和肥胖个体,并应用多种特征选择技术来识别与肥胖相关的潜在风险因素。所提出的ML模型准确率超过90%,从而优于现有的先进模型。对多模态临床数据集的消融研究结果表明,生理临床测量是区分健康与肥胖受试者的最具影响力的风险因素。此外,多种特征排序技术证实了已知的肥胖风险因素(C肽、胰岛素、白蛋白、尿酸),并识别出与肥胖相关合并症(如糖尿病,例如糖化血红蛋白、葡萄糖)、肝功能(例如碱性磷酸酶、γ-谷氨酰转移酶)、血脂谱(例如甘油三酯、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇)等相关的潜在风险因素。大多数双能X线吸收法测量值(例如骨面积、骨矿物质成分、骨矿物质密度等)在肥胖组中显著更高(P值<0.05)。总体而言,肥胖的假定保护因素对骨量的净效应似乎超过了假定的有害因素。所有已识别的因素都需要在临床环境中进一步研究,以了解它们在肥胖中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23d1/7693222/ee90c24f7951/diagnostics-10-00883-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索