Suppr超能文献

基于集成的机器学习模型预测 2 型糖尿病及其对骨骼健康的影响。

An ensemble-based machine learning model for predicting type 2 diabetes and its effect on bone health.

机构信息

College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.

Hamad Medical Corporation, Doha, Qatar.

出版信息

BMC Med Inform Decis Mak. 2024 May 29;24(1):144. doi: 10.1186/s12911-024-02540-0.

Abstract

BACKGROUND

Diabetes is a chronic condition that can result in many long-term physiological, metabolic, and neurological complications. Therefore, early detection of diabetes would help to determine a proper diagnosis and treatment plan.

METHODS

In this study, we employed machine learning (ML) based case-control study on a diabetic cohort size of 1000 participants form Qatar Biobank to predict diabetes using clinical and bone health indicators from Dual Energy X-ray Absorptiometry (DXA) machines. ML models were utilized to distinguish diabetes groups from non-diabetes controls. Recursive feature elimination (RFE) was leveraged to identify a subset of features to improve the performance of model. SHAP based analysis was used for the importance of features and support the explainability of the proposed model.

RESULTS

Ensemble based models XGboost and RF achieved over 84% accuracy for detecting diabetes. After applying RFE, we selected only 20 features which improved the model accuracy to 87.2%. From a clinical standpoint, higher HDL-Cholesterol and Neutrophil levels were observed in the diabetic group, along with lower vitamin B12 and testosterone levels. Lower sodium levels were found in diabetics, potentially stemming from clinical factors including specific medications, hormonal imbalances, unmanaged diabetes. We believe Dapagliflozin prescriptions in Qatar were associated with decreased Gamma Glutamyltransferase and Aspartate Aminotransferase enzyme levels, confirming prior research. We observed that bone area, bone mineral content, and bone mineral density were slightly lower in the Diabetes group across almost all body parts, but the difference against the control group was not statistically significant except in T12, troch and trunk area. No significant negative impact of diabetes progression on bone health was observed over a period of 5-15 yrs in the cohort.

CONCLUSION

This study recommends the inclusion of ML model which combines both DXA and clinical data for the early diagnosis of diabetes.

摘要

背景

糖尿病是一种慢性疾病,可导致许多长期的生理、代谢和神经并发症。因此,早期发现糖尿病有助于确定适当的诊断和治疗方案。

方法

在这项研究中,我们对来自卡塔尔生物银行的 1000 名糖尿病患者进行了基于机器学习(ML)的病例对照研究,使用来自双能 X 射线吸收仪(DXA)的临床和骨骼健康指标来预测糖尿病。ML 模型用于区分糖尿病组和非糖尿病对照组。递归特征消除(RFE)用于识别一组特征,以提高模型的性能。基于 SHAP 的分析用于特征的重要性,并支持所提出模型的可解释性。

结果

基于集成的 XGboost 和 RF 模型实现了超过 84%的糖尿病检测准确率。在应用 RFE 后,我们仅选择了 20 个特征,将模型准确率提高到 87.2%。从临床角度来看,糖尿病组的 HDL-胆固醇和中性粒细胞水平较高,而维生素 B12 和睾丸激素水平较低。糖尿病患者的钠离子水平较低,可能源于临床因素,包括特定药物、激素失衡、未控制的糖尿病。我们认为达格列净在卡塔尔的处方与谷氨酰转肽酶和天门冬氨酸氨基转移酶水平降低有关,这与先前的研究一致。我们观察到,在几乎所有身体部位,糖尿病组的骨面积、骨矿物质含量和骨密度都略低,但与对照组的差异没有统计学意义,除了 T12、troch 和躯干区域。在队列中,糖尿病进展对骨骼健康没有观察到明显的负面影响,时间跨度为 5-15 年。

结论

本研究建议将 DXA 和临床数据相结合的 ML 模型纳入早期糖尿病诊断中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c21/11134939/009ec2a9c9f8/12911_2024_2540_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验