Suppr超能文献

The pathophysiology of proximal neurofilamentous giant axonal swellings: implications for the pathogenesis of amyotrophic lateral sclerosis.

作者信息

Gold B G

机构信息

Neurotoxicology Laboratory, Rutgers-State University, College of Pharmacy, Piscataway, NJ 08854.

出版信息

Toxicology. 1987 Oct 30;46(2):125-39. doi: 10.1016/0300-483x(87)90123-5.

Abstract

Neurofilamentous giant axonal swellings are observed in a number of human disorders, although they can manifest at different locations (i.e. proximal or distal) along the axon. Recent advances in understanding the pathogenesis of these changes has resulted from correlations of ultrastructural changes with abnormalities in the axonal transport of neurofilament proteins in experimental models produced by toxic chemicals. Using single, high doses of either acrylamide or 2,5-hexanedione, a reduction in neurofilament transport has been shown in the rat sciatic nerve. In contrast to the distal axonal swellings observed upon repeated exposures to these agents, modest proximal axonal swellings containing increased neurofilament content are found following high dose exposures. Thus, regardless of the location of swelling production, a defect in slow transport appears to underlie swelling formation. beta,beta'-Iminodipropionitrile (IDPN) produces proximal neurofilamentous giant axonal swellings which are indistinguishable from those observed in some patients with amyotrophic lateral sclerosis (ALS). Although not a model for ALS, IDPN provides a means to study the functional consequences of proximal giant axonal swellings. Intracellular recordings from IDPN-intoxicated cats reveal a number of abnormalities which may have electrophysiological counterparts in ALS, suggesting that the swellings may be important in the expression of the disease. Although axonal degeneration is rarely observed in the cat, perikaryal recordings reveal a number of alterations which are strikingly similar to those obtained from chromatolytic motor neurons following nerve transection. A perturbation of "trophic" signals from the periphery may be involved in the generation of axotomy-like changes in IDPN-intoxicated cats.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验