Suppr超能文献

基于可转移MP2的机器学习用于精确耦合簇能量计算

Transferable MP2-Based Machine Learning for Accurate Coupled-Cluster Energies.

作者信息

Townsend Jacob, Vogiatzis Konstantinos D

机构信息

Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.

出版信息

J Chem Theory Comput. 2020 Dec 8;16(12):7453-7461. doi: 10.1021/acs.jctc.0c00927. Epub 2020 Nov 2.

Abstract

Machine learning methods have enabled the low-cost evaluation of molecular properties such as energy at an unprecedented scale. While many of such applications have focused on molecular input based on geometry, few studies consider representations based on the underlying electronic structure. Directing the attention to the electronic structure offers a unique challenge that allows for a more detailed representation of the underlying physics and how they affect molecular properties. The target of this work is to efficiently encode a lower-cost correlated wave function derived from MP2 to predict a higher-cost coupled-cluster singles-and-doubles (CCSD) wave function based on correlation-pair energies and the contributing electron promotions (excitations) and integrals. The new molecular representation explores the short-range behavior of electron correlation and utilizes distinct models that differentiate between two-electron promotions from the same molecular orbital or from two different orbitals. We present a re-engineered set of input features that provide an intuitive description of the orbital properties involved in electron correlation. The overall models are found to be highly transferable and size extensive, necessitating very few training instances to approach the chemical accuracy of a broad spectrum of organic molecules. The efficiency and transferability of the novel representation are demonstrated on a series of linear hydrocarbons, the potential energy surface of the water dimer, and on the GDB-9 database. For the GDB-9 database, we found that data from only 140 randomly selected molecules are adequate to achieve chemical accuracy for more than 133 000 organic molecules.

摘要

机器学习方法已能够以前所未有的规模对诸如能量等分子性质进行低成本评估。虽然许多此类应用都集中在基于几何结构的分子输入上,但很少有研究考虑基于底层电子结构的表示。将注意力转向电子结构带来了一个独特的挑战,它能更详细地表示底层物理过程以及它们如何影响分子性质。这项工作的目标是高效编码从MP2导出的低成本相关波函数,以便基于相关对能量、贡献电子跃迁(激发)和积分来预测更高成本的耦合簇单双激发(CCSD)波函数。新的分子表示探索了电子相关的短程行为,并利用了不同的模型来区分来自同一分子轨道或两个不同轨道的双电子跃迁。我们提出了一组重新设计的输入特征,它们能直观地描述电子相关中涉及的轨道性质。发现整体模型具有高度的可转移性和尺寸扩展性,只需极少的训练实例就能接近多种有机分子的化学精度。在一系列线性烃、水二聚体的势能面以及GDB - 9数据库上展示了这种新型表示的效率和可转移性。对于GDB - 9数据库,我们发现仅从140个随机选择的分子中获取的数据就足以实现对超过133000个有机分子的化学精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验