Suppr超能文献

机器学习中基于分子轨道基的电子结构转移能力。

Transferability in Machine Learning for Electronic Structure via the Molecular Orbital Basis.

机构信息

Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.

出版信息

J Chem Theory Comput. 2018 Sep 11;14(9):4772-4779. doi: 10.1021/acs.jctc.8b00636. Epub 2018 Aug 8.

Abstract

We present a machine learning (ML) method for predicting electronic structure correlation energies using Hartree-Fock input. The total correlation energy is expressed in terms of individual and pair contributions from occupied molecular orbitals, and Gaussian process regression is used to predict these contributions from a feature set that is based on molecular orbital properties, such as Fock, Coulomb, and exchange matrix elements. With the aim of maximizing transferability across chemical systems and compactness of the feature set, we avoid the usual specification of ML features in terms of atom- or geometry-specific information, such atom/element-types, bond-types, or local molecular structure. ML predictions of MP2 and CCSD energies are presented for a range of systems, demonstrating that the method maintains accuracy while providing transferability both within and across chemical families; this includes predictions for molecules with atom-types and elements that are not included in the training set. The method holds promise both in its current form and as a proof-of-principle for the use of ML in the design of generalized density-matrix functionals.

摘要

我们提出了一种使用 Hartree-Fock 输入预测电子结构相关能量的机器学习 (ML) 方法。总相关能量表示为占据分子轨道的个体和对贡献,使用高斯过程回归从基于分子轨道性质的特征集预测这些贡献,例如 Fock、库仑和交换矩阵元素。为了最大限度地提高跨化学系统的可转移性和特征集的紧凑性,我们避免了通常根据原子或特定于几何形状的信息(例如原子/元素类型、键类型或局部分子结构)指定 ML 特征。我们为一系列系统呈现了 MP2 和 CCSD 能量的 ML 预测,证明该方法在保持准确性的同时提供了在化学家族内和跨化学家族的可转移性;这包括对训练集中未包含的原子类型和元素的分子的预测。该方法不仅在当前形式下具有前景,而且还为在广义密度矩阵泛函设计中使用 ML 提供了原理证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验