文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种全自动高通量工作流程,用于基于 3D 的人类中脑细胞类器官中的化学筛选。

A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.

机构信息

Department for Cell and Developmental Biology, Max Planck Institute for molecular Biomedicine, Münster, Germany.

Westfälische Wilhelms-Universität Münster, Münster, Germany.

出版信息

Elife. 2020 Nov 3;9:e52904. doi: 10.7554/eLife.52904.


DOI:10.7554/eLife.52904
PMID:33138918
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7609049/
Abstract

Three-dimensional (3D) culture systems have fueled hopes to bring about the next generation of more physiologically relevant high-throughput screens (HTS). However, current protocols yield either complex but highly heterogeneous aggregates ('organoids') or 3D structures with less physiological relevance ('spheroids'). Here, we present a scalable, HTS-compatible workflow for the automated generation, maintenance, and optical analysis of human midbrain organoids in standard 96-well-plates. The resulting organoids possess a highly homogeneous morphology, size, global gene expression, cellular composition, and structure. They present significant features of the human midbrain and display spontaneous aggregate-wide synchronized neural activity. By automating the entire workflow from generation to analysis, we enhance the intra- and inter-batch reproducibility as demonstrated via RNA sequencing and quantitative whole mount high-content imaging. This allows assessing drug effects at the single-cell level within a complex 3D cell environment in a fully automated HTS workflow.

摘要

三维(3D)培养系统激发了人们的希望,期望能带来更具生理相关性的下一代高通量筛选(HTS)。然而,目前的方案要么产生复杂但高度异质的聚集体(“类器官”),要么产生生理相关性较低的 3D 结构(“球体”)。在这里,我们提出了一种可扩展的、适用于高通量筛选的工作流程,用于在标准 96 孔板中自动生成、维持和对人类中脑细胞进行光学分析。得到的类器官具有高度均匀的形态、大小、全局基因表达、细胞组成和结构。它们呈现出人类中脑细胞的显著特征,并显示出自发的全聚集范围同步神经活动。通过从生成到分析的整个工作流程自动化,我们提高了批次内和批次间的重现性,这通过 RNA 测序和定量整体高内涵成像得到了证明。这允许在复杂的 3D 细胞环境中以全自动 HTS 工作流程评估单细胞水平的药物作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/33a338a063fe/elife-52904-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/2c81bc91023c/elife-52904-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/136480db5e26/elife-52904-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/41e2398d3226/elife-52904-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/77c57184e2d1/elife-52904-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/4401c4217650/elife-52904-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/066e3018e188/elife-52904-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/998defab9385/elife-52904-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/d087e8b1e2d7/elife-52904-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/a12e6c3136c1/elife-52904-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/85a22c7e6825/elife-52904-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/c149f6264ff4/elife-52904-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/624bb5f30c18/elife-52904-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/15fa6ec702e5/elife-52904-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/c9801c9ee975/elife-52904-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/088792412b4a/elife-52904-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/2200f5314908/elife-52904-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/70590de40b8d/elife-52904-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/d485cdbff0f4/elife-52904-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/33a338a063fe/elife-52904-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/2c81bc91023c/elife-52904-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/136480db5e26/elife-52904-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/41e2398d3226/elife-52904-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/77c57184e2d1/elife-52904-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/4401c4217650/elife-52904-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/066e3018e188/elife-52904-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/998defab9385/elife-52904-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/d087e8b1e2d7/elife-52904-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/a12e6c3136c1/elife-52904-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/85a22c7e6825/elife-52904-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/c149f6264ff4/elife-52904-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/624bb5f30c18/elife-52904-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/15fa6ec702e5/elife-52904-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/c9801c9ee975/elife-52904-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/088792412b4a/elife-52904-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/2200f5314908/elife-52904-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/70590de40b8d/elife-52904-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/d485cdbff0f4/elife-52904-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a2/7609049/33a338a063fe/elife-52904-fig8-figsupp1.jpg

相似文献

[1]
A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.

Elife. 2020-11-3

[2]
Combining Automated Organoid Workflows with Artificial Intelligence-Based Analyses: Opportunities to Build a New Generation of Interdisciplinary High-Throughput Screens for Parkinson's Disease and Beyond.

Mov Disord. 2021-12

[3]
Generation, High-Throughput Screening, and Biobanking of Human-Induced Pluripotent Stem Cell-Derived Cardiac Spheroids.

J Vis Exp. 2023-3-10

[4]
Generation and Maintenance of Homogeneous Human Midbrain Organoids.

Bio Protoc. 2021-6-5

[5]
High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping.

Cell Stem Cell. 2018-5-17

[6]
Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening.

J Mol Cell Biol. 2020-8-1

[7]
Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.

Cell Stem Cell. 2016-8-4

[8]
Paraxial mesoderm organoids model development of human somites.

Elife. 2022-1-28

[9]
Cell-Type-Specific High Throughput Toxicity Testing in Human Midbrain Organoids.

Front Mol Neurosci. 2021-7-15

[10]
Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids.

Int J Mol Sci. 2021-3-6

引用本文的文献

[1]
Immune Organoids: A Review of Their Applications in Cancer and Autoimmune Disease Immunotherapy.

Curr Issues Mol Biol. 2025-8-13

[2]
Immunomodulatory Natural Products in Cancer Organoid-Immune Co-Cultures: Bridging the Research Gap for Precision Immunotherapy.

Int J Mol Sci. 2025-7-26

[3]
Generation of Individualized, Standardized, and Electrically Synchronized Human Midbrain Organoids.

Cells. 2025-8-6

[4]
Beyond Structure: Next-Generation Electrophysiological Platforms for Functional Brain Organoids.

Int J Stem Cells. 2025-8-30

[5]
Neural organoids as advanced tools for neurotoxicity modeling.

Curr Res Toxicol. 2025-7-11

[6]
Advances, challenges, and opportunities of human midbrain organoids for modelling of the dopaminergic system.

EMBO J. 2025-7-2

[7]
ETMR stem-like state and chemo-resistance are supported by perivascular cells at single-cell resolution.

Nat Commun. 2025-6-25

[8]
Brain Organoids and Assembloids-From Disease Modeling to Drug Discovery.

Cells. 2025-6-4

[9]
Linking autism risk genes to morphological and pharmaceutical screening by high-content imaging: Future directions and opinion.

Psychiatry Clin Neurosci. 2025-8

[10]
Brain organoid model systems of neurodegenerative diseases: recent progress and future prospects.

Front Neurosci. 2025-5-23

本文引用的文献

[1]
Comparison of Cell and Organoid-Level Analysis of Patient-Derived 3D Organoids to Evaluate Tumor Cell Growth Dynamics and Drug Response.

SLAS Discov. 2020-8

[2]
Cell stress in cortical organoids impairs molecular subtype specification.

Nature. 2020-1-29

[3]
Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer.

Cell Stem Cell. 2020-1-2

[4]
The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery.

Cell Chem Biol. 2019-6-20

[5]
Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures.

Nat Neurosci. 2019-1-28

[6]
Generation and assembly of human brain region-specific three-dimensional cultures.

Nat Protoc. 2018-9

[7]
Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures.

Toxicol Sci. 2019-1-1

[8]
Machine learning and image-based profiling in drug discovery.

Curr Opin Syst Biol. 2018-8

[9]
Pluripotent Stem Cell Platforms for Drug Discovery.

Trends Mol Med. 2018-7-11

[10]
Human induced pluripotent stem cell-derived glial cells and neural progenitors display divergent responses to Zika and dengue infections.

Proc Natl Acad Sci U S A. 2018-6-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索