Shaikh Saniyah, Siddique Luqman, Khalifey Hafsah T, Mahereen Rutaba, Raziq Thaabit, Firdous Rushdan M, Siddique Aisha, Shakir Ismail M, Ahmed Zara, Akbar Arshiya, Alshehri Eman A, Chinappan Raja, Alzhrani Alaa, Mir Tanveer Ahmed, Yaqinuddin Ahmed
College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Front Neurosci. 2025 May 23;19:1604435. doi: 10.3389/fnins.2025.1604435. eCollection 2025.
Neurological diseases are a leading cause of disability, morbidity, and mortality, affecting 43% of the world's population. The detailed study of neurological diseases, testing of drugs, and repair of site-specific defects require physiologically relevant models that recapitulate key events and dynamic neurodevelopmental processes in a highly organized fashion. As an evolving technology, self-organizing and self-assembling brain organoids offer the advantage of modeling different stages of brain development in a 3D microenvironment. Herein, we review the utility, advantages, and limitations of the latest breakthroughs in brain organoid endeavors in the context of modeling three of the most prevalent neurodegenerative diseases-Alzheimer's, Parkinson's, and Huntington's disease. We conclude the review with a perspective on the future prospects of brain organoid models with their myriad possible applications in translational medicine.
神经系统疾病是导致残疾、发病和死亡的主要原因,影响着全球43%的人口。对神经系统疾病的详细研究、药物测试以及特定部位缺陷的修复需要生理相关模型,这些模型能够以高度有序的方式重现关键事件和动态神经发育过程。作为一种不断发展的技术,自组织和自组装脑类器官具有在三维微环境中模拟大脑发育不同阶段的优势。在此,我们在模拟三种最常见的神经退行性疾病——阿尔茨海默病、帕金森病和亨廷顿病的背景下,综述脑类器官研究最新突破的实用性、优势和局限性。我们以对脑类器官模型未来前景的展望作为综述的结尾,其在转化医学中有着无数可能的应用。