Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK.
Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
Nat Commun. 2020 Nov 2;11(1):5538. doi: 10.1038/s41467-020-19215-9.
Enzyme regulation is vital for metabolic adaptability in living systems. Fine control of enzyme activity is often delivered through post-translational mechanisms, such as allostery or allokairy. β-phosphoglucomutase (βPGM) from Lactococcus lactis is a phosphoryl transfer enzyme required for complete catabolism of trehalose and maltose, through the isomerisation of β-glucose 1-phosphate to glucose 6-phosphate via β-glucose 1,6-bisphosphate. Surprisingly for a gatekeeper of glycolysis, no fine control mechanism of βPGM has yet been reported. Herein, we describe allomorphy, a post-translational control mechanism of enzyme activity. In βPGM, isomerisation of the K145-P146 peptide bond results in the population of two conformers that have different activities owing to repositioning of the K145 sidechain. In vivo phosphorylating agents, such as fructose 1,6-bisphosphate, generate phosphorylated forms of both conformers, leading to a lag phase in activity until the more active phosphorylated conformer dominates. In contrast, the reaction intermediate β-glucose 1,6-bisphosphate, whose concentration depends on the β-glucose 1-phosphate concentration, couples the conformational switch and the phosphorylation step, resulting in the rapid generation of the more active phosphorylated conformer. In enabling different behaviours for different allomorphic activators, allomorphy allows an organism to maximise its responsiveness to environmental changes while minimising the diversion of valuable metabolites.
酶的调节对于生命系统的代谢适应性至关重要。酶活性的精细控制通常通过翻译后机制来实现,如变构作用或别构调节。乳球菌(Lactococcus lactis)中的β-磷酸葡萄糖变位酶(βPGM)是一种磷酸转移酶,通过β-葡萄糖 1,6-二磷酸将β-葡萄糖 1-磷酸异构化为葡萄糖 6-磷酸,从而完成海藻糖和麦芽糖的完全分解代谢。令人惊讶的是,作为糖酵解的守门员,βPGM 还没有报道过精细的调控机制。在此,我们描述了酶活性的一种翻译后调控机制——变构性。在βPGM 中,K145-P146 肽键的异构化导致两种构象体的群体出现,由于 K145 侧链的重新定位,这两种构象体具有不同的活性。体内磷酸化试剂,如 1,6-二磷酸果糖,可生成两种构象体的磷酸化形式,导致活性出现滞后阶段,直到更活跃的磷酸化构象体占主导地位。相比之下,反应中间产物β-葡萄糖 1,6-二磷酸,其浓度取决于β-葡萄糖 1-磷酸的浓度,耦合了构象转换和磷酸化步骤,从而快速生成更活跃的磷酸化构象体。通过为不同的变构激活剂提供不同的行为,变构性使生物体能够最大限度地响应环境变化,同时最小化有价值代谢物的分流。