Yang Ya-Nan, Li Ying-Xiang, Li Yi-Qiu, Zhang Tao
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P.R. China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
Nat Commun. 2020 Nov 2;11(1):5519. doi: 10.1038/s41467-020-19417-1.
Lithium garnets have been widely studied as promising electrolytes that could enable the next-generation all-solid-state lithium batteries. However, upon exposure to atmospheric moisture and carbon dioxide, insulating lithium carbonate forms on the surface and deteriorates the interfaces within electrodes. Here, we report a scalable solid sintering method, defined by lithium donor reaction that allows for complete decarbonation of LiLaZrTaO (LLZTO) and yields an active LiCoO layer for each garnet particle. The obtained LiCoO coated garnets composite is stable against air without any LiCO. Once working in a solid-state lithium battery, the LiCoO-LLZTO@LiCoO composite cathode maintains 81% of the initial capacity after 180 cycles at 0.1 C. Eliminating CO evolution above 4.0 V is confirmed experimentally after transforming LiCO into LiCoO. These results indicate that LiCO is no longer an obstacle, but a trigger of the intimate solid-solid interface. This strategy has been extended to develop a series of LLZTO@active layer materials.
锂石榴石作为一种有前景的电解质已被广泛研究,有望应用于下一代全固态锂电池。然而,暴露在大气中的水分和二氧化碳中时,绝缘的碳酸锂会在其表面形成,从而使电极内部的界面恶化。在此,我们报告了一种可扩展的固相烧结方法,该方法由锂供体反应定义,可使LiLaZrTaO(LLZTO)完全脱碳,并为每个石榴石颗粒生成活性LiCoO层。所获得的LiCoO包覆石榴石复合材料在空气中稳定,无任何LiCO。一旦应用于固态锂电池,LiCoO-LLZTO@LiCoO复合阴极在0.1 C下循环180次后仍保持初始容量的81%。将LiCO转化为LiCoO后,实验证实消除了4.0 V以上的CO析出。这些结果表明,LiCO不再是障碍,而是紧密固-固界面的触发因素。该策略已扩展用于开发一系列LLZTO@活性层材料。