School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3400, Australia.
Plant Genome. 2021 Mar;14(1):e20064. doi: 10.1002/tpg2.20064. Epub 2020 Nov 2.
Safflower, a minor oilseed crop, is gaining increased attention for food and industrial uses. Safflower genebank collections are an important genetic resource for crop enhancement and future breeding programs. In this study, we investigated the population structure of a safflower collection sourced from the Australian Grain Genebank and assessed the potential of genomic prediction (GP) to evaluate grain yield and related traits using single and multi-site models. Prediction accuracies (PA) of genomic best linear unbiased prediction (GBLUP) from single site models ranged from 0.21 to 0.86 for all traits examined and were consistent with estimated genomic heritability (h ), which varied from low to moderate across traits. We generally observed a low level of genome × environment interactions (g × E). Multi-site g × E GBLUP models only improved PA for accessions with at least some phenotypes in the training set. We observed that relaxing quality filtering parameters for genotype-by-sequencing (GBS), such as missing genotype call rate, did not affect PA but upwardly biased h estimation. Our results indicate that GP is feasible in safflower evaluation and is potentially a cost-effective tool to facilitate fast introgression of desired safflower trait variation from genebank germplasm into breeding lines.
红花,一种次要的油料作物,因其在食品和工业用途上的价值而受到越来越多的关注。红花基因库是作物改良和未来育种计划的重要遗传资源。在这项研究中,我们调查了来自澳大利亚谷物基因库的红花收集品的种群结构,并评估了基因组预测(GP)在使用单一和多站点模型评估粒产量和相关性状方面的潜力。单站点模型的基因组最佳线性无偏预测(GBLUP)的预测准确性(PA)范围为 0.21 到 0.86,适用于所有检查的性状,与估计的基因组遗传力(h)一致,该值在不同性状之间从低到中等变化。我们通常观察到基因组与环境互作(g × E)的水平较低。多站点 g × E GBLUP 模型仅提高了在训练集中至少有一些表型的个体的 PA。我们观察到,放宽基因型测序(GBS)的质量过滤参数,如缺失基因型调用率,不会影响 PA,但会向上偏置 h 的估计。我们的结果表明,GP 在红花评估中是可行的,并且可能是一种具有成本效益的工具,可以促进从基因库种质中快速引入所需的红花性状变异到育种系中。